【題目】已知函數(shù),其中.

(1)時,求函數(shù)上的最大值和最小值;

(2)若函數(shù)上的單調(diào)函數(shù),求實數(shù)的取值范圍.

【答案】(1);(2.

【解析】

1)由,對其求導(dǎo),得到,解對應(yīng)不等式,求出單調(diào)區(qū)間,進而可求出最值;

2)先由得到函數(shù)不可能在上單調(diào)遞增,由題意,得到上單調(diào)遞減,推出恒成立;令,用導(dǎo)數(shù)的方研究其單調(diào)性,進而可求出結(jié)果.

(1)時,,所以.

解得,由解得.

故函數(shù)在區(qū)間上單減,在區(qū)間上單增.

,

,

(2) 因為,所以函數(shù)不可能在上單調(diào)遞增.

所以,若函數(shù)上單調(diào)函數(shù),則必是單調(diào)遞減函數(shù),即恒成立.

可得

恒成立的必要條件為.

,則.

時,由,可得,

可得,

.上單調(diào)遞增,在上單調(diào)遞減.

,下證:時,.

即證,令,其中,則,

則原式等價于證明:時,.

(1)的結(jié)論知,顯然成立.

綜上,當時,函數(shù)上的單調(diào)函數(shù),且單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面中點.

(Ⅰ)求證:;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認知程度高).現(xiàn)從參賽者中抽取了人,按年齡分成5組,第一組: ,第二組: ,第三組: ,第四組: ,第五組: ,得到如圖所示的頻率分布直方圖,已知第一組有6人.

(1)求;

(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));

(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個按年齡分的組和5個按職業(yè)分的組中每組各選派1人參加知識競賽,分別代表相應(yīng)組的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業(yè)組中1~5組的成績分別為93,98,94,95,90.

(Ⅰ)分別求5個年齡組和5個職業(yè)組成績的平均數(shù)和方差;

(Ⅱ)以上述數(shù)據(jù)為依據(jù),評價5個年齡組和5個職業(yè)組對“一帶一路”的認知程度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到的圖象,只要將圖象怎樣變化得到( )

A.的圖象沿x軸方向向左平移個單位

B.的圖象沿x軸方向向右平移個單位

C.先作關(guān)于x軸對稱圖象,再將圖象沿x軸方向向右平移個單位

D.先作關(guān)于x軸對稱圖象,再將圖象沿x軸方向向左平移個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽馬;

(2)若,當鱉膈體積最大時,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.(本小題滿分16分)

已知函數(shù),并設(shè)

(1)圖像在處的切線方程為,求的值;

(2)若函數(shù)上單調(diào)遞減,則

時,試判斷的大小關(guān)系,并證明之;

對滿足題設(shè)條件的任意,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標原點,點F為拋物線C1的焦點,且拋物線C1上點P處的切線與圓C2相切于點Q.

當直線PQ的方程為時,求 拋物線C1的方程;

當正數(shù)P變化時,記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代科學(xué)家祖沖之兒子祖暅在實踐的基礎(chǔ)上提出了體積計算的原理:“冪勢既同,則積不容異”(“冪”是截面積,“勢”是幾何體的高),意思是兩個同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿足“冪勢既同”,則該不規(guī)則幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過點.

(1)求橢圓的方程;

(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關(guān)于軸對稱?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案