【題目】如圖所示,在四棱錐中,四邊形為菱形, 為正三角形,且分別為的中點(diǎn), 平面, 平面.
(1)求證: 平面;
(2)求與平面所成角的正弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)證明:AD⊥平面PEB,利用四邊形ABCD為菱形,可得AD∥BC,即可證明BC⊥平面PEB;
(2)以E為原點(diǎn),建立坐標(biāo)系,求出平面PDC的法向量,利用向量的夾角公式,即可求EF與平面PDC所成角的正弦值.
試題解析:
(1)證明:因?yàn)?/span>平面, 平面,
所以,
又平面平面,所以平面,
由四邊形菱形,得,
所以平面.
(2)解:
以為原點(diǎn), 分別為軸建立空間直角坐標(biāo)系,
不妨設(shè)菱形的邊長為2,則,
,
則點(diǎn),
,
設(shè)平面的法向量為,
則由,解得,
不妨令,得;
又,
所以與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC中角A,B,C的對邊,且csinB= bcosC.
(1)求角C的大。
(2)若c=3,sinA=2sinB,求△ABC的面積S△ABC .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘇州市一木地板廠生產(chǎn)A、B、C三類木地板,每類木地板均有環(huán)保型和普通兩種型號,某月的產(chǎn)量如下表(單位:片):
類型 | 木地板A | 木地板B | 木地板C |
環(huán)保型 | 150 | 200 | Z |
普通型 | 250 | 400 | 600 |
按分層抽樣的方法在這個(gè)月生產(chǎn)的木地板中抽取50片,其中A類木地板10片.
(1)求Z的值;
(2)用隨機(jī)抽樣的方法從B類環(huán)保木地板抽取8片,作為一個(gè)樣本,經(jīng)檢測它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),其離心率為.
(1)求橢圓的方程;
(2)直線與相交于兩點(diǎn),在軸上是否存在點(diǎn),使為正三角形,若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x2﹣9x+2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[﹣2,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】宿州某中學(xué)N名教師參加“低碳節(jié)能你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:
區(qū)間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人數(shù) | 25 | m | p | 75 | 25 |
(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加學(xué)校之間的宣傳交流活動,求恰有1人在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,對任意x∈R,不等式a(cos2x﹣m)+πcosx≥0恒成立,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1 , x2且f(x1)=x1 , 則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為( )
A.2
B.3
C.4
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)g(x)=ax3+2(1﹣a)x2﹣3ax在區(qū)間(﹣∞, )內(nèi)單調(diào)遞減,則a的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com