【題目】設(shè)圓x2+y2=12與拋物線x2=4y相交于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若過點(diǎn)F且斜率為1的直線l與拋物線和圓交于四個不同的點(diǎn),從左至右依次為P1 , P2 , P3 , P4 , 則|P1P2|+|P3P4|的值 , 若直線m與拋物線相交于M,N兩點(diǎn),且與圓相切,切點(diǎn)D在劣弧 上,則|MF|+|NF|的取值范圍是

【答案】5 ;[2+4 ,22]
【解析】解:由 ,得
即A(﹣2 ,2),B(2 ,2).
∵點(diǎn)F坐標(biāo)為(0,1),∴kFB= ,∴kl>kFB
所以直線l與圓交于P1、P3兩點(diǎn),與拋物線交于P2、P4兩點(diǎn),
設(shè)P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4
把直線l方程:y=x+1代入x2=4y,得x2﹣4x﹣4=0,∴x2+x4=4;
把直線l方程:y=x+1代入x2+y2=12,得2x2+2x﹣11=0,∴x1+x3=﹣1
∴|P1P2|+|P3P4|= [(x2﹣x1)+(x4﹣x3)]= [(x2+x4)﹣(x1+x3)]=5
所以|P1P2|+|P3P4|的值等于5
設(shè)直線m的方程為y=k+b(b>0),
代入拋物線方程得x2﹣4kx﹣4b=0,
設(shè)點(diǎn)M(x1 , y1),N(x2 , y2),則x1+x2=4k,
則y1+y2=k(x1+x2)+2b=4k2+2b,
∵直線m與該圓相切,∴ = ,即 ,
又|MF|=y1+1,|NF|=y2+1,
∴|MF|+|NF|=y1+y2+2=4k2+2b+2=
∵kOA=﹣ ,kOB= ,∴分別過A、B的圓的切線的斜率為 ,﹣
∴k∈[﹣ , ],∴0≤k2≤2,∴0≤ ﹣1≤12,
∵b>0,∴b∈[2 ,6]
所以|MF|+|NF|的取值范圍為[2+4 ,22].
故答案為:5 ;[2+4 ,22].

由圓的方程和拋物線的方程聯(lián)解,求得交點(diǎn)A、B的坐標(biāo),從而判斷直線l與圓交于P1、P3 , 直線l與拋物線交于P2、P4 , 另|P1P2|+|P3+P4|的表達(dá)式用P1 , P2 , P3 , P4的四點(diǎn)的橫坐標(biāo)表示,然后根據(jù)根與系數(shù)的關(guān)系,代入表達(dá)式,即解;先設(shè)直線m的方程y=k+b,交點(diǎn)M、N坐標(biāo),再用點(diǎn)M、N縱坐標(biāo)表示出|MF|+|NF|,由與圓相切,得到k與b的關(guān)系,消去k用b表示|MF|+|NF|,即得到關(guān)于b的一個函數(shù),由kOA=﹣ ,kOB= ,得到k的范圍,由此求得b的范圍,再將b的代入|MF|+|NF|的函數(shù)關(guān)系式中并求出其范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為G()(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本 = 固定成本 + 生產(chǎn)成本);銷售收入R()(萬元)滿足:,假定該產(chǎn)品產(chǎn)銷平衡,那么根據(jù)上述統(tǒng)計規(guī)律:

(Ⅰ)要使工廠有贏利,產(chǎn)量應(yīng)控制在什么范圍?

(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時,可使贏利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,若,且對任意的,都存在,使得成立,求實數(shù)a的取值范圍;

(2)當(dāng)時,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是拋物線上兩點(diǎn),且兩點(diǎn)橫坐標(biāo)之和為3.

(1)求直線的斜率;

(2)若直線,直線與拋物線相切于點(diǎn),且,求方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實數(shù) ,使 成立,則稱的不動點(diǎn).

(1)當(dāng)時,求的不動點(diǎn);

(2)若對于任意的實數(shù) 函數(shù) 恒有兩個相異的不動點(diǎn),求實數(shù)的取值范圍;

(3)在(2)的條件下,若的圖象上 兩點(diǎn)的橫坐標(biāo)是函數(shù) 的不動點(diǎn),且直線 是線段的垂直平分線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,交圓兩點(diǎn),過的平行線交于點(diǎn).

(1)證明:為定值,并寫出點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn)的軌跡為曲線,直線兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義域為的函數(shù)同時滿足以下三條:

(。⿲θ我獾總有(ⅱ)

(ⅲ)若則有就稱為“A函數(shù)”,下列定義在的函數(shù)中為“A函數(shù)”的有_______________

;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(aR)

(1)如果函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;

(2)證明:對任意的實數(shù)a,函數(shù)f(x)在(﹣∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣2ax+1+b(a>0)
(1)若f(x)在區(qū)間[2,3]上的最大值為4、最小值為1,求a,b的值;
(2)若a=1,b=1,關(guān)于x的方程f(|2x﹣1|)+k(4﹣3|2x﹣1|)=0,有3個不同的實數(shù)解,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案