已知函數(shù)數(shù)學(xué)公式,且f(2)=1.
(1)求m的值;
(2)判定f(x)的奇偶性,并說明理由;
(3)判斷f(x)在(-∞,0)上的單調(diào)性并給予證明.

解:(1)因為f(2)=1,即,解得m=1.
(2)函數(shù)f(x)為奇函數(shù).
函數(shù)的定義域為{x|x≠0},關(guān)于原點對稱.
又因為,
所以f(x)是奇函數(shù).
(3)設(shè)x1<x2<0,
=,
因為x1<x2<0,所以x1-x2<0,,
所以f(x1)<f(x2),
因此f(x)在(-∞,0)上為單調(diào)增函數(shù).
分析:(1)由f(2)=1列方程解出即可;
(2)根據(jù)函數(shù)奇偶性的定義即可作出判斷;
(3)設(shè)x1<x2<0,通過作差可判斷f(x1)與f(x2)的大小關(guān)系,依據(jù)單調(diào)性的定義即可判斷;
點評:本題主要考查函數(shù)的表示方法及函數(shù)的單調(diào)性、奇偶性,屬基礎(chǔ)題,定義是解決該類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,且f(2)<f(3)
(1)求k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-p•f(x)+(2p-1)x在區(qū)間[-1,2]上的值域為數(shù)學(xué)公式.若存在,求出這個p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省岳陽一中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),且f(2)<f(3)
(1)求k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-p•f(x)+(2p-1)x在區(qū)間[-1,2]上的值域為.若存在,求出這個p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省泰州市中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)過關(guān)測試卷:函數(shù)(1)(解析版) 題型:解答題

已知函數(shù),且f(2)<f(3)
(1)求k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-p•f(x)+(2p-1)x在區(qū)間[-1,2]上的值域為.若存在,求出這個p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年山東省煙臺市萊州一中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù),且f(2)<f(3)
(1)求k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-p•f(x)+(2p-1)x在區(qū)間[-1,2]上的值域為.若存在,求出這個p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年《龍門亮劍》高三數(shù)學(xué)(理科)一輪復(fù)習(xí):第2章第6節(jié)(人教AB通用)(解析版) 題型:解答題

已知函數(shù),且f(2)<f(3)
(1)求k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-p•f(x)+(2p-1)x在區(qū)間[-1,2]上的值域為.若存在,求出這個p的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案