【題目】已知函數(shù),給出下列命題:①必是偶函數(shù);②當(dāng)時,的圖像關(guān)于直線對稱;③若,則在區(qū)間上是增函數(shù);④若,在區(qū)間上有最大值. 其中正確的命題序號是:( )
A. ③ B. ②③ C. ③④ D. ①②③
【答案】A
【解析】
利用函數(shù)性質(zhì)逐個選項進(jìn)行分析即可得出結(jié)果.
當(dāng)a≠0時,f(x)不具有奇偶性,①錯誤;
令a=0,b=﹣2,則f(x)=|x2﹣2|,
此時f(0)=f(2)=2,
但f(x)=|x2﹣2|的對稱軸為y軸而不關(guān)于x=1對稱,②錯誤;
又∵f(x)=|x2﹣2ax+b|=|(x﹣a)2+b﹣a2|,圖象的對稱軸為x=a.
根據(jù)題意a2﹣b≤0,即f(x)的最小值b﹣a2≥0,
f(x)=(x﹣a)2+(b﹣a2),顯然f(x)在[a,+∞)上是增函數(shù),
故③正確;
又f(x)無最大值,故④不正確.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱垂直于底面, , , 是棱的中點.
(Ⅰ)證明:平面⊥平面;
(Ⅱ)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R)(其中A>0,ω>0,0<φ<)的周期為π,且圖象上一個最低點為M(,﹣2)
(1)求f(x)的解析式
(2)求f(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為偶函數(shù),且當(dāng)時,.記.給出下列關(guān)于函數(shù)的說法:①當(dāng)時,;②函數(shù)為奇函數(shù);③函數(shù)在上為增函數(shù);④函數(shù)的最小值為,無最大值. 其中正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左、右焦點為,右頂點為,上頂點為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過點且不垂直于坐標(biāo)軸的直線與橢圓交于兩點,已知點,當(dāng)時,求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題;命題函數(shù)在區(qū)間上為減函數(shù).
(1)若命題為假命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間的長度均為,多個互無交集的區(qū)間的并集長度為各區(qū)間長度之和,例如的長度。用表示不超過的最大整數(shù),例如。記。設(shè),,若用、和分別表示不等式、方程和不等式解集區(qū)間的長度,則當(dāng)時,____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進(jìn)行社會實踐,對歲的人群隨機抽取 1000 人進(jìn)行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時尚族”人數(shù)分別占本組人數(shù)的、.
(1)求歲與歲年齡段“時尚族”的人數(shù);
(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時尚達(dá)人大賽,其中兩人作為領(lǐng)隊.求領(lǐng)隊的兩人年齡都在歲內(nèi)的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com