【題目】已知函數(shù),給出下列命題:①必是偶函數(shù);②當(dāng)時,的圖像關(guān)于直線對稱;③若,則在區(qū)間上是增函數(shù);④若,在區(qū)間有最大值. 其中正確的命題序號是:( )

A. B. ②③ C. ③④ D. ①②③

【答案】A

【解析】

利用函數(shù)性質(zhì)逐個選項進(jìn)行分析即可得出結(jié)果.

當(dāng)a0時,f(x)不具有奇偶性,錯誤;

令a=0,b=﹣2,則f(x)=|x2﹣2|,

此時f(0)=f(2)=2,

但f(x)=|x2﹣2|的對稱軸為y軸而不關(guān)于x=1對稱,錯誤;

∵f(x)=|x2﹣2ax+b|=|(x﹣a)2+b﹣a2|,圖象的對稱軸為x=a.

根據(jù)題意a2﹣b≤0,即f(x)的最小值b﹣a2≥0,

f(x)=(x﹣a)2+(b﹣a2),顯然f(x)在[a,+∞)上是增函數(shù),

正確;

又f(x)無最大值,故不正確.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱垂直于底面, , 是棱的中點.

證明:平面⊥平面;

(Ⅱ)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(xR)(其中A>0,ω>0,0<φ<)的周期為π,且圖象上一個最低點為M(,﹣2)

(1)求f(x)的解析式

(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且當(dāng)時,.記.給出下列關(guān)于函數(shù)的說法:①當(dāng)時,;②函數(shù)為奇函數(shù);③函數(shù)上為增函數(shù);④函數(shù)的最小值為,無最大值. 其中正確的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點為,右頂點為,上頂點為,若, 軸垂直,且.

(1)求橢圓方程;

(2)過點且不垂直于坐標(biāo)軸的直線與橢圓交于兩點,已知點,當(dāng)時,求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題命題函數(shù)在區(qū)間上為減函數(shù).

1)若命題為假命題,求實數(shù)的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義區(qū)間的長度均為,多個互無交集的區(qū)間的并集長度為各區(qū)間長度之和,例如的長度。用表示不超過的最大整數(shù),例如。記。設(shè),,若用、分別表示不等式、方程和不等式解集區(qū)間的長度,則當(dāng)時,____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與正三角形的邊長均為,它們所在平面互相垂直, 平面,且

)求證:平面平面

)若,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校進(jìn)行社會實踐,對歲的人群隨機抽取 1000 人進(jìn)行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時尚族”人數(shù)分別占本組人數(shù)的、.

(1)求歲與歲年齡段“時尚族”的人數(shù);

(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時尚達(dá)人大賽,其中兩人作為領(lǐng)隊.求領(lǐng)隊的兩人年齡都在歲內(nèi)的概率。

查看答案和解析>>

同步練習(xí)冊答案