【題目】直線與雙曲線相交于、兩點(diǎn),為坐標(biāo)原點(diǎn),且

1)求滿足的關(guān)系;

2)求證:點(diǎn)到直線的距離是定值,并求的最小值.

【答案】1;(2)證明見(jiàn)解析,

【解析】

(1)設(shè)點(diǎn)A,B聯(lián)立直線方程和雙曲線方程消元化簡(jiǎn):

,然后利用韋達(dá)定理結(jié)合向量垂直即,可求得滿足的關(guān)系;

(2)利用點(diǎn)到直線的距離公式求出距離表達(dá)式再利用(1)的結(jié)論即可證明距離是定值;利用弦長(zhǎng)公式以及韋達(dá)定理表示出弦長(zhǎng)表達(dá)式,然后利用換元配方求解最小值.

1)設(shè)點(diǎn)A,B,聯(lián)立,

,

代入化簡(jiǎn)可得滿足的關(guān)系為:;

2)由點(diǎn)到直線的距離公式可得:,由(1)得

代入可解得為定值;

由直線與雙曲線交點(diǎn)弦弦長(zhǎng)公式可得:

,令(t≤3)

化簡(jiǎn)可得,

t≤3可得當(dāng),t=3時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,其準(zhǔn)線軸的交點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn).

(1)求拋物線的方程;

(2)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:存在實(shí)數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三邊分別為所對(duì)的角分別為,且三邊滿足,已知的外接圓的面積為,設(shè).則的取值范圍為______,函數(shù)的最大值的取值范圍為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進(jìn)口開(kāi)始到出口,每遇到一個(gè)岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口的岔路口就開(kāi)始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設(shè)點(diǎn)是其中的一個(gè)交叉路口點(diǎn).

(1)求甲經(jīng)過(guò)點(diǎn)的概率;

(2)設(shè)這名游客中恰有名游客都是經(jīng)過(guò)點(diǎn),求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從正方體的八個(gè)頂點(diǎn)中任取三個(gè)點(diǎn)作三角形,直角三角形的個(gè)數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次足球邀請(qǐng)賽共安排了支球隊(duì)參加,每支球隊(duì)預(yù)定的比賽場(chǎng)數(shù)分別是,,…,若任兩支球隊(duì)之間至多安排了一場(chǎng)比賽,則稱是一個(gè)“有效安排”證明是一個(gè)有效安排,且,則可去掉一支球隊(duì),并重新調(diào)整各隊(duì)之間的對(duì)局情況,使也是一個(gè)有效安排

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點(diǎn),具體方法如下:(l)取線段AB=2,過(guò)點(diǎn)B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點(diǎn)D;(3)以A為圓心,以AD為半徑畫弧,交AB于點(diǎn)E.則點(diǎn)E即為線段AB的黃金分割點(diǎn).若在線段AB上隨機(jī)取一點(diǎn)F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)

A. 0.236B. 0.382C. 0.472D. 0.618

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若方程為常數(shù))有兩個(gè)不相等的根,則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線段的長(zhǎng)度為a,在線段上取兩個(gè)點(diǎn),使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對(duì)圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對(duì)任意的正整數(shù) ,都有

④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有

其中真命題的序號(hào)是________________(請(qǐng)寫出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案