已知Rt△AOB的三個頂點都在拋物線y2=2px上,其中直角頂點O為原點,OA所在直線的方程為y=x,△AOB的面積為6,求該拋物線的方程.

y2=3x或y2=-3x.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

雙曲線的中心在原點,右焦點為,漸近線方程為 .
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線交于、兩點,問:當(dāng)為何值時,以 為直徑的圓過原點;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線頂點在原點,它的準(zhǔn)線過雙曲線=1(a>0,b>0)的一個焦點,并與雙曲線實軸垂直,已知拋物線與雙曲線的一個交點為,求拋物線與雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對應(yīng)拋物線的準(zhǔn)線方程.
(1)過點(-3,2);
(2)焦點在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦距為2,且過點.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右焦點分別為,過點的直線與橢圓C交于兩點.
①當(dāng)直線的傾斜角為時,求的長;
②求的內(nèi)切圓的面積的最大值,并求出當(dāng)的內(nèi)切圓的面積取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準(zhǔn)線上一點(異于右準(zhǔn)線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標(biāo)為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,動點到兩定點構(gòu)成,且,設(shè)動點的軌跡為。

(1)求軌跡的方程;
(2)設(shè)直線軸交于點,與軌跡相交于點,且,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓+y2=1的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.
(1)當(dāng)直線AM的斜率為1時,求點M的坐標(biāo);
(2)當(dāng)直線AM的斜率變化時,直線MN是否過x軸上的一定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案