已知函數(shù)f(x)=ln(
e+x2
-x)(其中e為自然數(shù)對(duì)數(shù)的底數(shù)),則f(tan
π
12
)+2f(tanπ)+f(tan
11π
12
)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)奇偶性的判斷,對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:判斷函數(shù)的奇偶性,然后求解表達(dá)式的值.
解答: 解:∵函數(shù)f(x)=ln(
e+x2
-x),
∴f(-x)=ln(
e+x2
+x)=-ln(
e+x2
-x)=-f(x),函數(shù)是奇函數(shù),
∵tan
11π
12
=-tan
π
12
,
∴f(tan
π
12
)+2f(tanπ)+f(tan
11π
12
)=2f(tanπ)=2f(0)=2ln
e
=1.
故答案為:1.
點(diǎn)評(píng):本題考查函數(shù)的值的求法,函數(shù)的奇偶性的判斷與應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,復(fù)數(shù)
7+i
3+4i
=( 。
A、1-i
B、-1+i
C、
17
25
+
31
25
i
D、-
17
7
+
25
7
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某農(nóng)戶準(zhǔn)備建一個(gè)水平放置的直四棱柱形儲(chǔ)水窖(如圖),其中直四棱柱的高AA1=10m,兩底面ABCD,A1B1C1D1是高為2m,面積為10m2的等腰梯形,且∠ADC=θ(0<θ<
π
2
).若儲(chǔ)水窖頂蓋每平方米的造價(jià)為100元,側(cè)面每平方米的造價(jià)為400元,底部每平方米的造價(jià)為500元.
(1)試將儲(chǔ)水窖的造價(jià)y表示為θ的函數(shù);
(2)該農(nóng)戶如何設(shè)計(jì)儲(chǔ)水窖,才能使得儲(chǔ)水窖的造價(jià)最低,最低造價(jià)是多少元(取
3
=1.73).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知斜三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形,側(cè)面A1ACC1為菱形,∠A1AC=60°,平面A1ACC1⊥平面ABC,M、N是AB,CC1的中點(diǎn).
(I)求證:CM∥平面A1BN.
(Ⅱ)求證:A1C⊥BN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C1和C2的方程分別為
x2
4
+y2=1和
y2
16
+
x2
4
=1,射線OA與C1和C2分別交于點(diǎn)A和點(diǎn)B,且
OB
=2
OA
,則射線OA的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=a-2i,z2=b+i,
.
z1
是z1的共軛復(fù)數(shù).若
.
z1
•z2≥-4,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2,-1≤x0<x1<x2<…<xn≤1,an=|f(xn)-f(xn-1)|,n∈N*,Sn=a1+a2+a3+…+an,則Sn的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐的側(cè)面展開圖是一個(gè)半徑為4cm的半圓,則此圓錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={-1,0,1},A={1},B⊆U,則B∩(∁UA)不可能為( 。
A、∅B、{0}
C、{-1,0}D、{-1,0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案