已知中心在原點,焦點在x軸上的橢圓離心率為,且經過點,過橢圓的左焦點作直線交橢圓于A、B兩點,以OA、OB為鄰邊作平行四邊形OAPB。
(1)求橢圓E的方程
(2)現將橢圓E上的點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼囊话耄笏们的焦點坐標和離心率
(3)是否存在直線,使得四邊形OAPB為矩形?若存在,求出直線的方程。若不存在,說明理由。
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練19練習卷(解析版) 題型:填空題
已知中心在原點,焦點在x軸上的雙曲線的離心率為,實軸長為4,則雙曲線的方程為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
已知中心在原點,焦點在x軸上的橢圓C的離心率為,且橢圓經過點,
(I)求橢圓C的標準方程;
(Ⅱ)是否存在過點P(2,1)的直線與橢圓C交于不同的兩點A,B滿足·,若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com