【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=
(1)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(2)若點(diǎn) P是曲線C上的動(dòng)點(diǎn),求 P到直線l的距離的最小值,并求出 P點(diǎn)的坐標(biāo).

【答案】
(1)解:∵ ,

∴x﹣y=1.

∴直線的極坐標(biāo)方程為:ρcosθ﹣ρsinθ=1.

,

,

∴ρcos2θ=sinθ,

∴(ρcosθ)2=ρsinθ

即曲線C的普通方程為y=x2


(2)解:設(shè)P(x0,y0),

,

∴P到直線的距離:

∴當(dāng) 時(shí),

∴此時(shí) ,

∴當(dāng)P點(diǎn)為 時(shí),P到直線的距離最小,最小值為


【解析】本題(1)可以先消參數(shù),求出直線l的普通方程,再利用公式將曲線C的極坐標(biāo)方程化成平面直角坐標(biāo)方程,(2)利用點(diǎn)到直線的距離公式,求出P到直線l的距離的最小值,再根據(jù)函數(shù)取最值的情況求出P點(diǎn)的坐標(biāo),得到本題結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對(duì)稱,且g(x)的圖象過(4,2)點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個(gè),分別編號(hào)為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個(gè)球.

(Ⅰ)若兩個(gè)球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號(hào)的差的絕對(duì)值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯(cuò)誤的是(
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.若p∧q為假命題,則p,q均為假命題
C.對(duì)命題P:存在x∈R,使得x2+x+1<0,則¬p為:任意x∈R,均有x2+x+1≥0
D.“x>2”是“x2﹣3x+2>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿12分) 已知集合在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(x,y) ,其中

1)求點(diǎn)M不在x軸上的概率;

2)求點(diǎn)M正好落在區(qū)域上的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+ )(ω>0)的圖象與y=2的圖象的兩相鄰交點(diǎn)的距離為π,要得到y(tǒng)=2sinωx的圖象,只需把y=f(x)的圖象(
A.向右平移
B.向左平移
C.向左平移
D.向右平移

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足f′(x1)= ,f′(x2 ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是(
A.( ,
B.(0,1)
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

有一個(gè)側(cè)面是正三角形的四棱錐如圖(1),它的三視圖如圖(2).

(Ⅰ)證明: 平面;

(Ⅱ)求平面與正三角形側(cè)面所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案