(本題16分) 本公司計劃2008年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲、乙電視臺的廣告收費標(biāo)準(zhǔn)分別為元/分鐘和200元/分鐘,規(guī)定甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

.

(本題16分)

解:設(shè)公司在甲電視臺和乙電視臺做廣告的時間分別為分鐘和分鐘,總收益為元,由題意得                 

目標(biāo)函數(shù)為.………………………5分

二元一次不等式組等價于 

作出二元一次不等式組所表示的平面區(qū)域,即可行域.如圖:

作直線,即.………………10分

平移直線,從圖中可知,當(dāng)直線點時,目標(biāo)函數(shù)取得最大值.    聯(lián)立解得

的坐標(biāo)為

(元)………………………15分

答:該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.……………………………16分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題16分)

如圖所示,某人在斜坡P處仰視正對面山頂上一座鐵塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,觀測者所在斜坡CD近似看成直線,斜坡與水平面夾角為,

(1)以射線OC為軸的正向,OB為軸正向,建立直角坐標(biāo)系,求出斜坡CD所在直線方程;

(2)當(dāng)觀察者P視角∠APB最大時,求點P的坐標(biāo)(人的身高忽略不計).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010屆上海市虹口區(qū)高三第二次模擬考試數(shù)學(xué)卷 題型:解答題

(本題16分)
如圖所示,某人在斜坡P處仰視正對面山頂上一座鐵塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,觀測者所在斜坡CD近似看成直線,斜坡與水平面夾角為
(1)以射線OC為軸的正向,OB為軸正向,建立直角坐標(biāo)系,求出斜坡CD所在直線方程;
(2)當(dāng)觀察者P視角∠APB最大時,求點P的坐標(biāo)(人的身高忽略不計).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010屆上海市虹口區(qū)高三第二次模擬考試數(shù)學(xué)卷 題型:解答題

(本題16分)

如圖所示,某人在斜坡P處仰視正對面山頂上一座鐵塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,觀測者所在斜坡CD近似看成直線,斜坡與水平面夾角為,

(1)以射線OC為軸的正向,OB為軸正向,建立直角坐標(biāo)系,求出斜坡CD所在直線方程;

(2)當(dāng)觀察者P視角∠APB最大時,求點P的坐標(biāo)(人的身高忽略不計).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)某公司欲建連成片的網(wǎng)球場數(shù)座,用128萬元購買土地10000平方米,該球場每座的建筑面積為1000平方米,球場的總建筑面積的每平方米的平均建筑費用與球場數(shù)有關(guān),當(dāng)該球場建n個時,每平方米的平均建筑費用用f(n)表示,且f(n)=f(m )(1+)(其中n>m,n∈N),又知建五座球場時,每平方米的平均建筑費用為400元,為了使該球場每平方米的綜合費用最省(綜合費用是建筑費用與購地費用之和),公司應(yīng)建幾個球場?

查看答案和解析>>

同步練習(xí)冊答案