【題目】已知f(x)=﹣x3+ax,其中a∈R,g(x)=﹣ x ,且f(x)<g(x)在(0,1]上恒成立.求實數(shù)a的取值范圍.
【答案】解:設(shè)F(x)=f(x)﹣g(x)=﹣x3+ax+ , ∵f(x)<g(x)在(0,1]上恒成立,
∴F(x)<0在(0,1]上恒成立,
∴a<x2﹣ x 在(0,1]上恒成立,
令h(x)=x2﹣ x ,
要求a的取值范圍,使得上式在區(qū)間(0,1]上恒成立,
只需求函數(shù)h(x)=x2﹣ x 在(0,1]上的最小值.
∵h(yuǎn)′(x)=2x﹣
= ,
由h′(x)=0,得(2 ﹣1)(4x+2 +1)=0.
∵4x+2 +1>0,
∴2 ﹣1=0,x= .
又∵x∈(0, ]時,h′(x)<0,
x∈( ,1]時,h′(x)>0,
∴x= 時,h(x)有最小值h( )=﹣ ,
∴a<﹣ .
故實數(shù)a的取值范圍是
【解析】把f(x),g(x)代入f(x)<g(x),由f(x)<g(x)在(0,1]上恒成立.得到a<x2﹣ x 在(0,1]上恒成立,構(gòu)造輔助函數(shù)h(x)=x2﹣ x ,由導(dǎo)數(shù)求得h(x)在(0,1]上的最小值,則答案可求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=Asin(2x+ )(x∈R)的圖象過點P( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)已知f( + )= ,﹣ <a<0,求cos(a﹣ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知底角為45°的等腰梯形ABCD,底邊BC長為12,腰長為4 ,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分.
(1)令BF=x(0<x<12),試寫出直線右邊部分的面積y與x的函數(shù)解析式;
(2)在(1)的條件下,令y=f(x).構(gòu)造函數(shù)g(x)= .
①判斷函數(shù)g(x)在(4,8)上的單調(diào)性;
②判斷函數(shù)g(x)在定義域內(nèi)是否具有單調(diào)性,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}的通項an;
(Ⅱ)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輛汽車以x km/h的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求60≤x≤120)時,每小時的油耗(所需要的汽油量)為,其中k為常數(shù),若汽車以120km/h的速度行駛時,每小時的油耗為11.5L.
(1)求k的值;
(2)求該汽車每小時油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組后得到如右部分頻率分布直方圖,觀察圖中的信息,
回答下列問題:
(1)補全頻率分布直方圖;并估計本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分?jǐn)?shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第n年需要付出設(shè)備的維修和工人工資等費用an的信息如圖.
(1)求an;
(2)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓: 和圓: .
(1)若直線過點,且被圓截得的弦長為,求直線的方程;
(2)設(shè)為平面直角坐標(biāo)系上的點,滿足:存在過點的無窮多對相互垂直的直線和,它們分別與圓和相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線 在 和 處的切線互相平行,求 的值;
(2)求 的單調(diào)區(qū)間;
(3)設(shè) ,若對任意 ,均存在 ,使得 ,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com