12、已知函數(shù)f(x)=x2(ax+b)(a,b∈R)在x=2時有極值,其圖象在點(1,f(1))處的切線與直線3x+y=0平行,則函數(shù)f(x)的單調(diào)減區(qū)間為
(0,2)
分析:對函數(shù)f(x)求導,根據(jù)導數(shù)的幾何意義求出ab的值確定函數(shù)f(x)的解析式,最后根據(jù)導數(shù)小于0時原函數(shù)單調(diào)遞減可得答案.
解答:解:由函數(shù)f(x)=x2(ax+b)在x=2處取得極值
則 f'(2)=12a+4b=0
由圖象在點(1,f(1))處的切線與直線3x+y=0平行
則 f'(1)=3a+2b=-3
聯(lián)立解得 a=1,b=-3
代入,得 f(x)=x2(ax+b)=x3-3x2
此函數(shù)的定義域為(-∞,∞)
f'(x)=3x2-6x
令f'(x)=0,解得 x1=0,x2=2
由x1=0,x2=2將(-∞,∞)分成三個區(qū)間(-∞,0),(0,2),(2,∞);
在區(qū)間(-∞,0)和(2,∞)上f′(x)>0,所以函數(shù)f(x)在區(qū)間(-∞,0]和[2,∞)上是單調(diào)增加的;
在區(qū)間(0,2)上f′(x)<0,所以函數(shù)f(x)在區(qū)間(0,2)上是單調(diào)減少的
故答案為:(0,2)
點評:本題主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負之間的關系,即當導數(shù)大于0時原函數(shù)單調(diào)遞增,當導數(shù)小于0時原函數(shù)單調(diào)遞減.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案