【題目】為迎接年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結(jié)束后對學生進行了考核. 記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了名學生的考核成績,并作成如下莖葉圖:

5

0

1

1

6

6

0

1

4

3

3

5

8

7

2

3

7

6

8

7

1

7

8

1

1

4

5

2

9

9

0

2

1

3

0

(Ⅰ)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核成績?yōu)閮?yōu)秀的概率;

(Ⅱ)從圖中考核成績滿足的學生中任取人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學生的考核成績在區(qū)間內(nèi)的概率,根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效. 請你根據(jù)圖中數(shù)據(jù),判斷此次中學生冰雪培訓活動是否有效,并說明理由.

【答案】(Ⅰ)(Ⅱ) (Ⅲ)見解析

【解析】

(Ⅰ)根據(jù)莖葉圖求出滿足條件的概率即可;

(Ⅱ)結(jié)合圖表得到6人中有2個人考核為優(yōu),從而求出滿足條件的概率即可;

(Ⅲ)求出滿足 的成績有16個,求出滿足條件的概率即可.

(Ⅰ)設(shè)這名學生考核優(yōu)秀為事件

由莖葉圖中的數(shù)據(jù)可以知道,名同學中,有名同學考核優(yōu)秀

所以所求概率約為

(Ⅱ)設(shè)從圖中考核成績滿足的學生中任取人,至少有一人考核成績優(yōu)秀為事件

因為表中成績在人中有個人考核為優(yōu)

所以基本事件空間包含個基本事件,事件包含 個基本事件

所以

(Ⅲ)根據(jù)表格中的數(shù)據(jù),滿足 的成績有個,

所以

所以可以認為此次冰雪培訓活動有效

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.

試估計該河流在8月份水位的中位數(shù);

1)以此頻率作為概率,試估計該河流在8月份發(fā)生1級災害的概率;

2)該河流域某企業(yè),在8月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.

現(xiàn)此企業(yè)有如下三種應對方案:

方案

防控等級

費用(單位:萬元)

方案一

無措施

0

方案二

防控1級災害

40

方案三

防控2級災害

100

試問,如僅從利潤考慮,該企業(yè)應選擇這三種方案中的哪種方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,且,

(1)證明:平面;

(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面;

2若直線與平面所成的角為求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點和橢圓. 直線與橢圓交于不同的兩點.

(Ⅰ) 求橢圓的離心率;

(Ⅱ) 當時,求的面積;

(Ⅲ)設(shè)直線與橢圓的另一個交點為,當中點時,求的值 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次53.5公里的自行車個人賽中,25名參賽手的成績(單位:分鐘)的莖葉圖如圖所示,現(xiàn)將參賽選手按成績由好到差編為1-25號,再用系統(tǒng)抽樣方法從中選取5人.已知選手甲的成績?yōu)?5分鐘,若甲被選取,則被選取的其余4名選手的成績的平均數(shù)為( )

A. 97 B. 96 C. 95 D. 98

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為提高服務質(zhì)量,隨機調(diào)查了50名男顧客和50名女顧客,每位顧客對該商場的服務給出滿意或不滿意的評價,得到下面列聯(lián)表:

滿意

不滿意

男顧客

40

10

女顧客

30

20

1)分別估計男、女顧客對該商場服務滿意的概率;

2)能否有95%的把握認為男、女顧客對該商場服務的評價有差異?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)斜率為的直線交橢圓,兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.

查看答案和解析>>

同步練習冊答案