【題目】某工廠有兩個(gè)車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對(duì)他們中每位工人生產(chǎn)完成一件產(chǎn)品的時(shí)間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計(jì) | 20 |
第一車間樣本頻數(shù)分布表
(Ⅰ)分別估計(jì)兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間小于75min的人數(shù);
(Ⅱ)分別估計(jì)兩車間工人生產(chǎn)時(shí)間的平均值,并推測(cè)哪個(gè)車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(Ⅲ)從第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人中,隨機(jī)抽取3人,記抽取的生產(chǎn)時(shí)間小于65min的工人人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.
【答案】(I)60,300;(II)第二車間工人生產(chǎn)效率更高.(III)見(jiàn)解析.
【解析】
(I)估計(jì)第一車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人).估計(jì)第二車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人);(II)分別計(jì)算兩車間工人生產(chǎn)時(shí)間的平均值,再推測(cè)哪個(gè)車間工人的生產(chǎn)效率更高;(III)由題得X可取值為0,1,2,再分別求出概率,列出分布列,求出數(shù)學(xué)期望.
(I)估計(jì)第一車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人).
估計(jì)第二車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人).
(II)第一車間生產(chǎn)時(shí)間平均值約為(min).
第二車間生產(chǎn)時(shí)間平均值約為
(min).
∴第二車間工人生產(chǎn)效率更高.
(III)由題意得,第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人有6人,其中生產(chǎn)時(shí)間小于65min的有2人,從中抽取3人,隨機(jī)變量X服從超幾何分布,
X可取值為0,1,2,
,
,
.
X的分布列為:
X | 0 | 1 | 2 |
P |
所以數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的棱長(zhǎng)為1的正方體,任作平面與對(duì)角線垂直,使得與正方體的每個(gè)面都有公共點(diǎn),這樣得到的截面多邊形的面積為,周長(zhǎng)為的范圍分別是_____________(用集合表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某單位全體員工年齡頻率分布表,經(jīng)統(tǒng)計(jì),該單位35歲以下的青年職工中,男職工和女職工人數(shù)相等,且男職工的年齡頻率分布直方圖和如下:
年齡(歲) | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) | [50,55) | 合計(jì) |
人數(shù)(人) | 6 | 18 | 50 | 31 | 19 | 16 | 140 |
(Ⅰ)求;
(Ⅱ)求該單位男女職工的比例;
(Ⅲ)若從年齡在[25,30)歲的職工中隨機(jī)抽取兩人參加某項(xiàng)活動(dòng),求恰好抽取一名男職工和一名女職工的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有標(biāo)號(hào)為的張標(biāo)簽,隨機(jī)的選取兩張標(biāo)簽.
(1)若標(biāo)簽的選取是無(wú)放回的,求兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)的概率;
(2)若標(biāo)簽的選取是有放回的,求兩張標(biāo)簽上的數(shù)字至少有一個(gè)為5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中
①.對(duì)于命題:存在,則:;
②.命題“若,則函數(shù)在上是增函數(shù)”的逆命題為假命題;
③.若為真命題,則均為真命題;
④.命題“若,則”的逆否命題是“若,則”.
錯(cuò)誤的是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專著,全書總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就!案鄿p損術(shù)”便出自其中,原文記載如下:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也。”其核心思想編譯成如示框圖,若輸入的,分別為45,63,則輸出的為( )
A. 2B. 3C. 5D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是圓錐的高,是圓錐底面的直徑,是底面圓周上一點(diǎn),是的中點(diǎn),平面和平面將圓錐截去部分后的幾何體如圖所示.
(1)求證:平面平面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù),),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)若直線被圓截得的弦長(zhǎng)為時(shí),求的值.
(2)直線的參數(shù)方程為(為參數(shù)),若,垂足為,求點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.回歸直線過(guò)樣本點(diǎn)的中心.
B.對(duì)分類變量X與Y,隨機(jī)變量K2的觀測(cè)值k越大,則判斷“X與Y有關(guān)系”的把握程度越小
C.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1
D.在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com