【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)= ,稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題: ①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是(
A.4
B.3
C.2
D.1

【答案】A
【解析】解:①∵當(dāng)x為有理數(shù)時(shí),f(x)=1;當(dāng)x為無理數(shù)時(shí),f(x)=0, ∴當(dāng)x為有理數(shù)時(shí),ff((x))=f(1)=1;當(dāng)x為無理數(shù)時(shí),f(f(x))=f(0)=1,
即不管x是有理數(shù)還是無理數(shù),均有f(f(x))=1,故①正確;
②∵有理數(shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),
∴對任意x∈R,都有f(﹣x)=f(x),故②正確;
③若x是有理數(shù),則x+T也是有理數(shù); 若x是無理數(shù),則x+T也是無理數(shù),
∴根據(jù)函數(shù)的表達(dá)式,任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對x∈R恒成立,故③正確;
④取x1=﹣ ,x2=0,x3= ,可得f(x1)=0,f(x2)=1,f(x3)=0,
∴A( ,0),B(0,1),C(﹣ ,0),恰好△ABC為等邊三角形,故④正確.
即真命題的個(gè)數(shù)是4個(gè),
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ ),f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)y=2f(x)+f′(x)的一個(gè)單調(diào)遞減區(qū)間是(
A.[ , ]
B.[﹣ , ]
C.[﹣ ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線C (a>0,b>0)的左、右焦點(diǎn)分別為F1,F2,|F1F2|=2c,過F2x軸的垂線與雙曲線在第一象限的交點(diǎn)為A,已知Q,|F2Q|>|F2A|,點(diǎn)P是雙曲線C右支上的動(dòng)點(diǎn),且|PF1|+|AQ|>|F1F2|恒成立,則雙曲線的離心率的取值范圍是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)的雙曲線的右焦點(diǎn)為,右頂點(diǎn)為.

(1)求雙曲線的方程;

(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(
A.命題“若xy=0,則x=0”的否命題為:“若xy=0,則x≠0”
B.“若x+y=0,則x,y互為相反數(shù)”的逆命題為真命題
C.命題“x∈R,使得2x2﹣1<0”的否定是:“x∈R,均有2x2﹣1<0”
D.命題“若cosx=cosy,則x=y”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,,沿對角線將折起,使點(diǎn)C移到 點(diǎn),且C點(diǎn)在平面ABD的射影O恰在AB上.

(1)求證:平面ACD;

求直線AB與平面D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤不超過15萬元時(shí),按銷售利潤的進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤超過15萬元時(shí),若超過部分為A萬元,則超出部分按進(jìn)行獎(jiǎng)勵(lì),沒超出部分仍按銷售利潤的進(jìn)行獎(jiǎng)勵(lì)記獎(jiǎng)金總額為單位:萬元,銷售利潤為單位:萬元

1寫出該公司激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案的函數(shù)表達(dá)式;

2如果業(yè)務(wù)員老張獲得萬元的獎(jiǎng)金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

已知圓滿足:

y軸所得弦長為2

x軸分成兩段圓弧,其弧長的比為31

圓心到直線lx-2y=0的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

同步練習(xí)冊答案