設集合P={1,2,3,4,5},Q={3,4,5,6,7}.則P∩Q=(  )
A、{1,2}
B、{3,4,5}
C、{1,2,6,7}
D、{1,2,3,4,5}
考點:交集及其運算
專題:集合
分析:由P與Q,求出兩集合的交集即可.
解答: 解:∵P={1,2,3,4,5},Q={3,4,5,6,7},
∴P∩Q={3,4,5}.
故選:B.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+(a2-4a+1)x+2在區(qū)間(-∞,1]上是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-2x+m.
(1)若任意x∈[0,3],f(x)≥0恒成立,求m的取值范圍;
(2)若存在x∈[0,3],f(x)≥0成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)+b的一部分圖象如圖所示(A>0,ω>0,|φ|<
π
2
),則函數(shù)表達式為( 。
A、y=2sin(
1
2
x+
12
)+2
B、y=2sin(2x+
π
6
)+2
C、y=4sin(2x+
12
)+2
D、y=4sin(2x+
π
6
)+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:直線l:(2+m)x+(1-2m)y+4-3m=0,不論m為何實數(shù),直線l恒過一定點M,則點M的坐標
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

奇函數(shù)f(x)在(0,+∞)上的解析式為f(x)=x(1-x),則在(-∞,0)上的解析式為(  )
A、f(x)=x(1-x)
B、f(x)=x(x-1)
C、f(x)=x(1+x)
D、f(x)=-(1+x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某設備的使用年限x和所支出的維修費y(萬元)有如下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
由資料可知y和x呈線性相關關系,由表中數(shù)據(jù)算出線性回歸方程
y
=
b
x+
a
中的
b
=1.23 據(jù)此估計,使用年限為10年時的維修費用是( 。┤f元.
A、12.18
B、12.28
C、12.38
D、12.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=x2},B={y|y=-2x2+3},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x||x|≥x2},N={x|y=2x-1,x∈R},則M∩N=( 。
A、(0,1]
B、(0,1)
C、[0,1)
D、[0,1]

查看答案和解析>>

同步練習冊答案