如圖,一圓形紙片的圓心為O,  F是圓內(nèi)一定點(diǎn),M是圓周
上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕
為CD, 設(shè)CD與OM交于P, 則點(diǎn)P的軌跡是( 
A.橢圓B.雙曲線
C.拋物線D.圓
A

分析:根據(jù)CD是線段MF的垂直平分線.可推斷出|MP|=|PF|,進(jìn)而可知|PF|+|PO|=|PM|+|PO|=|MO|結(jié)果為定值,進(jìn)而根據(jù)橢圓的定義推斷出點(diǎn)P的軌跡.
解:由題意知,CD是線段MF的垂直平分線.
∴|MP|=|PF|,
∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),
又顯然|MO|>|FO|,
∴根據(jù)橢圓的定義可推斷出點(diǎn)P軌跡是以F、O兩點(diǎn)為焦點(diǎn)的橢圓.
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩定點(diǎn)F1(-1,0)、F2(1,0),且|F1F2|是|PF1|與|PF2|的等差中項(xiàng),則動(dòng)點(diǎn)P的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分14分)
已知兩點(diǎn)M(-1,0),N(1,0),且點(diǎn)P使,,成公差小于零的等差數(shù)列。
(1)點(diǎn)P的軌跡是什么曲線?
(2)若點(diǎn)P的坐標(biāo)為(x0y0),記為θ的夾角,求tanθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個(gè)焦點(diǎn)出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過(guò)橢圓的另一個(gè)焦點(diǎn).今有一個(gè)水平放置的橢圓形臺(tái)球盤,點(diǎn)A、B是它的焦點(diǎn),長(zhǎng)軸長(zhǎng)為2a,焦距為2c,靜放在點(diǎn)A的小球(小球的半徑忽略不計(jì))從點(diǎn)A沿直線出發(fā),經(jīng)橢圓壁反射后第一次回到點(diǎn)A時(shí),小球經(jīng)過(guò)的路程是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的右焦點(diǎn)為,右準(zhǔn)線為,點(diǎn),線段于點(diǎn),若,則="       " .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線與拋物線有 一個(gè)公共的焦點(diǎn),且兩曲線的一個(gè)交點(diǎn)為,若,則雙曲線方程為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.設(shè)分別是橢圓的左、右焦點(diǎn).若點(diǎn)在橢圓上,且,則                                                            
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案