【題目】根據(jù)下列條件分別求出直線l的方程.

1)直線l經(jīng)過A4,1),且橫、縱截距相等;

2)直線l平行于直線3x+4y+170,并且與兩坐標軸圍成的三角形的面積為24.

【答案】(1)直線l的方程為:x+y50,或x4y0(2)滿足條件的直線方程為:3x+4y±240

【解析】

1)當直線過原點時,方程為,當直線不過原點時,設(shè)直線的方程為:,把點代入直線的方程可得值,即得所求的直線方程

2)直線與平行,故可設(shè)直線方程為,求出直線與兩坐標軸的交點,即可得到三角形的面積,求出的值.

1)直線l經(jīng)過原點時滿足條件,設(shè)直線方程為,,

因為直線過點,可得直線方程為:,即

直線l不經(jīng)過原點時,設(shè)直線方程為:,把代入可得:.

∴直線l的方程為:.

綜上可得:直線l的方程為:.

2)設(shè)直線l的方程為:

與坐標軸的交點分別為:,.

,解得:.

∴滿足條件的直線方程為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】軍訓時,甲、乙兩名同學進行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環(huán)數(shù)之和作為該場比賽的成績.數(shù)學老師將甲、乙兩名同學的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個結(jié)論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數(shù)是21;(4)乙的成績的中位數(shù)是18.則這4個結(jié)論中,正確結(jié)論的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為2的正方體中,分別為棱的中點,為棱上的一點,且,設(shè)點的中點,則點到平面的距離為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C ,直線l

(Ⅰ)求直線l所過定點A的坐標;

(Ⅱ)求直線l被圓C所截得的弦長最短時m的值及最短弦長;

(Ⅲ)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動力量。年,某企業(yè)連續(xù)年累計研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結(jié)論錯誤的使( )

A. 年至年研發(fā)投入占營收比增量相比年至年增量大

B. 年至年研發(fā)投入增量相比年至年增量小

C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加

D. 該企業(yè)來連續(xù)年來研發(fā)投入占營收比逐年增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐P-ABC中,三條側(cè)棱PAPB、PC兩兩垂直,且,,又M是底面ABC內(nèi)一點,則M到三個側(cè)面的距離的平方和的最小值是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C與雙曲線有相同的漸近線,且雙曲線C過點

(1)若雙曲線C的左、右焦點分別為,,雙曲線C上有一點P,使得,求△的面積;

(2)過雙曲線C的右焦點作直線l與雙曲線右支交于A,B兩點,若△的周長是,求直線l的方程.

查看答案和解析>>

同步練習冊答案