精英家教網 > 高中數學 > 題目詳情
若矩陣M=
11
01
,則直線x+y+2=0在M對應的變換作用下所得到的直線方程為
 
分析:設直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,根據矩陣變換特點,寫出兩對坐標之間的關系,把已知的點的坐標用未知的坐標表示,代入已知直線的方程,得到結果.
解答:解:設直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,
[1  1][x]=[x0]
[0  1][y]=[y0]
∴x+y=x0
y=y0,
∴代入直線x+y+2=0方程:(x+y)+y+2=0
得到I的方程x+2y+2=0
故答案為:x+2y+2=0.
點評:本題考查矩陣的變換,是一個基礎題,本題解題的關鍵是得到兩個點的坐標之間的關系,注意數字的運算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數x恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若矩陣M=
11
01
,則直線x+y+2=0在M對應的變換作用下所得到的直線方程為______.

查看答案和解析>>

同步練習冊答案