數(shù)列的前項和為,等差數(shù)列滿足
(1)分別求數(shù)列,的通項公式;      
(2)設,求證

(1)(2)因為 ,所以
 ,所以

解析試題分析:(1)由 -①    得 -②,
②得,                2分
;                                3分
                         4分
                                 6分
(2)因為                           8分
所以                              9分
所以                        10分
                          11分
所以                                12分
考點:本題考查了數(shù)列通項公式及前n項和
點評:數(shù)列的通項公式及應用是數(shù)列的重點內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學生的理性思維,這是近幾年新課標高考對數(shù)列考查的一個亮點,也是一種趨勢.隨著新課標實施的深入,高考關(guān)注的重點為等差、等比數(shù)列的通項公式,錯位相減法、裂項相消法等求數(shù)列的前n項的和等等

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列前n項和,且.
(Ⅰ)試求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列中,,用數(shù)學歸納法證明:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知正項數(shù)列的前項和為,且 .
(1)求的值及數(shù)列的通項公式;
(2)求證:;
(3)是否存在非零整數(shù),使不等式
對一切都成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是單調(diào)遞增的等差數(shù)列,首項,前項和為,數(shù)列是等比數(shù)列,首項
(1)求的通項公式.
(2)設,數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的首項為,對任意的,定義.
(Ⅰ) 若
(i)求的值和數(shù)列的通項公式;
(ii)求數(shù)列的前項和
(Ⅱ)若,且,求數(shù)列的前項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知數(shù)列的通項公式為,數(shù)列的前n項和為,且滿足
(1)求的通項公式;
(2)在中是否存在使得中的項,若存在,請寫出滿足題意的一項(不要求寫出所有的項);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是公比大于1的等比數(shù)列,為數(shù)列的前項和,已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分)數(shù)列的前項和記為,且滿足
(1)求數(shù)列的通項公式;
(2)求和;
(3)設有項的數(shù)列是連續(xù)的正整數(shù)數(shù)列,并且滿足:

問數(shù)列最多有幾項?并求這些項的和.

查看答案和解析>>

同步練習冊答案