設(shè)x,y滿(mǎn)足約束條件
x≥0
x+2y-3≥0
2x+y-3≤0
,向量
a
=(y,s+x),
b
=(2,-1),且
a
b
,則s的最小值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:根據(jù)數(shù)量積的運(yùn)算關(guān)系,得到2y-s-x=0,即s=-x+2y,利用線性規(guī)劃的知識(shí)即可得到結(jié)論.
解答: 解:∵向量
a
=(y,s+x),
b
=(2,-1),且
a
b
,
a
b
=2y-s-x=0,即s=-x+2y,
則y=
1
2
x+
1
2
s
,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
平移直線y=
1
2
x+
1
2
s
,
由圖象可知當(dāng)直線y=
1
2
x+
1
2
s
經(jīng)過(guò)點(diǎn)A時(shí),直線的截距最小,此時(shí)s最小,
x+2y-3=0
2x+y-3=0
,解得
x=1
y=1
,
即A(1,1),
此時(shí)s=-1+2=1,
故答案為:1
點(diǎn)評(píng):本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問(wèn)題的關(guān)鍵,利用數(shù)形結(jié)合是解決問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AE⊥平面DEC,四邊形ABCD為正方形,M,N分別是線段BE、DE中點(diǎn).
(1)求證:MN∥平面ABCD;
(2)若
AE
EC
=
1
3
,求EC與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=2py(p>0)與圓O:x2+y2=4相交于A、B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且滿(mǎn)足
OA
+
OB
=2
OF
,
OA
OB
=-2
(Ⅰ)求拋物線的方程;
(Ⅱ)過(guò)點(diǎn)P(t,-1)作拋物線的兩條切線,切點(diǎn)分別為M,N,直線MN與圓O交于C,D兩點(diǎn),直線PF與圓O交于Q,R兩點(diǎn),如圖所示,四邊形CRDQ的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1-3an-1=0(n∈N*
(Ⅰ)若存在一個(gè)常數(shù)λ,使得數(shù)列{an+λ}為等比數(shù)列,求出λ的值;
(Ⅱ)設(shè)a1=
1
2
,數(shù)列{an}的前n和為Sn,求滿(mǎn)足Sn>1090的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ∈(
π
2
,π),cosθ=-
4
5
,求sin2θ及cos(θ+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>1,b>0,若a+b=2,則
1
a-1
+
2
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn=
n+2
3
an,n∈N*,則通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ∈(
π
2
,π),sinθ=
4
5
,則sin(θ+
π
3
)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案