已知雙曲線(b>0)的焦點,則b=()
A.3B.C.D.
C
可得雙曲線的準線為,又因為橢圓焦點為所以有.即b2=3故b=.故C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題15分)已知曲線C是到點和到直線

距離相等的點的軌跡,l是過點Q(-1,0)的直線,
MC上(不在l上)的動點;A、Bl上,
軸(如圖)。
(Ⅰ)求曲線C的方程;
(Ⅱ)求出直線l的方程,使得為常數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓和圓,且圓C與x軸交于A1,A2兩點(1)設橢圓C1的右焦點為F,點P的圓C上異于A1,A2的動點,過原點O作直線PF的垂線交橢圓的右準線交于點Q,試判斷直線PQ與圓C的位置關系,并給出證明。  (2)設點在直線上,若存在點,使得(O為坐標原點),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)已知橢圓,直線與橢圓交于兩點,是線段的中點,連接并延長交橢圓于點設直線與直線的斜率分別為,且,求橢圓的離心率.若直線經(jīng)過橢圓的右焦點,且四邊形是平行四邊形,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2是雙曲線的兩焦點,以線段F1F2為邊作正三角形MF1F2,若邊MF1的中點在雙曲線上,則雙曲線的離心率是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓C1的左準線為l,左右焦點分別為F1、F­2,拋物線C2的準線為l,一個焦點為F2,C1與C2的一個交點為P,則等于(   )
A.-1B.1C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點,直線PF1與圓C相切.
(1)求m的值;
(2)求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-
x2
2
與過點M(0,-1)的直線l相交于A、B兩點,O為原點.若OA和OB的斜率之和為1.
(1)求直線l的方程;
(2)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設圓過雙曲線的右頂點和右焦點,圓心在雙曲線上,則圓心到雙曲線中心的距離      .

查看答案和解析>>

同步練習冊答案