在平面直角坐標系中,O是原點,
OA
=(1,0),P是平面內(nèi)的動點,若|
OP
-
OA
|=|
OP
OA
|,則P點的軌跡方程是
 
考點:軌跡方程,平面向量數(shù)量積的運算
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用|
OP
-
OA
|=|
OP
OA
|,化簡,即可得出結(jié)論.
解答: 解:設P(x,y),則
OP
=(x,y)

又因為|
OP
-
OA
|=|
OP
OA
|,
所以(x-1)2+y2=x2,整理得y2=2x-1.
故答案為:y2=2x-1.
點評:本題考查向量的運算,求軌跡方程,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,C=2A,cosA=
3
4

(Ⅰ)求cosB;
(Ⅱ)若
BC
BA
=
27
2
,求邊AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,(x∈R)
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且c=
3
,f(C)=0,
AC
AB
=
cosB
cosC
,求A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,若復數(shù)z=(2-i)(1+ai)為純虛數(shù),則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的等差數(shù)列{an}的前10項和為100,那么a3•a8的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x20=5,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(6,2),
b
=(-2,4),則
a
+
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

五個數(shù):2,x,y,z,18成等比數(shù)列,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若cos(α+
π
6
)-sinα=
3
3
5
,則cos(α+
π
3
)=
 

查看答案和解析>>

同步練習冊答案