【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(1)求函數(shù)的極值點;
(2)若對任意,都有,求常數(shù)的取值范圍.
【答案】(1)的極小值點為,無極大值點;(2).
【解析】
(1)求出導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的符號判斷函數(shù)的單調(diào)性從而求得函數(shù)的極值點;(2)構(gòu)造函數(shù),求出導(dǎo)數(shù)判斷函數(shù)單調(diào)性從而證明當(dāng)時對任意的不等式恒成立即可.
(1)求導(dǎo)得().
由得;由得.
所以在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增.
故函數(shù)的極小值點為,無極大值點.
(2)設(shè)函數(shù),則
,其中.
(i)當(dāng)時,因為,則必然存在,使在區(qū)間內(nèi)恒成立,所以在區(qū)間內(nèi)單調(diào)遞增.
于是,這與題設(shè)矛盾,故舍去.
(ii)當(dāng)時,因為在區(qū)間內(nèi)單調(diào)遞減,
所以,故在區(qū)間內(nèi)單調(diào)遞減,
于是,從而在區(qū)間內(nèi)單調(diào)遞減,
故對任意,都有,滿足題意.
綜上所述,常數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的上頂點為,右焦點為F,連結(jié)TF并延長與橢圓交于點S,且.
(1)求橢圓的方程;
(2)已知直線與x軸交于點M,過點M的直線AB與交于A、B兩點,點P為直線上任意一點,設(shè)直線AB與直線交于點N,記PA,PB,PN的斜率分別為,,,則是否存在實數(shù),使得恒成立?若是,請求出的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某控制器中有一個易損部件,現(xiàn)統(tǒng)計了30個該部件的使用壽命,結(jié)果如下(單位:小時);
710 721 603 615 760 742 841 591 590 721 718 750 760 713 709
681 736 654 722 732 722 715 726 699 755 751 709 733 705 700
(1)估計該部件的使用壽命達(dá)到一個月及以上的概率(一個月按30天計算);
(2)為了保證該控制器能穩(wěn)定工作,將若干個同樣的部件按下圖連接在一起組成集成塊,每一個部件是否能正常工作互不影響.對比和時,哪個能保證集成塊使用壽命達(dá)到一個月及以上的概率超過0.8?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(其中為參數(shù)).在以為極點、軸的非負(fù)半軸為極軸的極坐標(biāo)系(兩種坐標(biāo)系的單位長度相同)中,曲線:的焦點的極坐標(biāo)為.
(1)求常數(shù)的值;
(2)設(shè)與交于、兩點,且,求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PO垂直圓O所在的平面,AB是圓O的一條直徑,C為圓周上異于A,B的動點,D為弦BC的中點,,.
(1)證明:平面平面;
(2)當(dāng)四面體PABC的體積最大時,求B到平面PAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ(ρ﹣2sinθ)=1.
(1)求C的直角坐標(biāo)方程;
(2)設(shè)直線l與y軸相交于P,與曲線C相交于A、B兩點,且|PA|+|PB|=2,求點O到直線l的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com