【題目】如圖,已知四棱錐,平面⊥平面,是以為斜邊的等腰直角三角形,,,,為的中點(diǎn).
(1)證明:;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)取的中點(diǎn),連接,,可得,,根據(jù)勾股定理可得,從而可得,再利用線面垂直的判定定理可得平面,即證.
(2)方法1:(體積法),利用求出到平面的距離為,利用線面角的定義即可求解;方法2:(坐標(biāo)法),以點(diǎn)為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量,利用即可求解.
解析:(1)取的中點(diǎn),連接,.
因?yàn)?/span>,所以.
另一方面,因?yàn)?/span>是的中位線,所以.
設(shè),則,,,
所以.
所以,故.
所以平面.
所以.
(2)方法1:(體積法)
因?yàn)槠矫?/span>平面于,平面,,
所以平面.
三棱錐的體積為.
取的中點(diǎn),連接,,所以.
又由平面知,所以平面,故.
因?yàn)?/span>,,所以,所以.
設(shè)到平面的距離為,則由知,解得.
又,
所以直線與平面所成角的正弦值為.
方法2:(坐標(biāo)法)
因?yàn)槠矫?/span>平面于,
平面,,所以平面.
建立如圖所示的空間直角坐標(biāo)系,則,,,
,.
所以,.
設(shè)平面的一個(gè)法向量為,
則,取,則.
又,所以直線與平面所成角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,決定從2018年秋季入學(xué)的高中一年級(jí)學(xué)生開始實(shí)施“”高考模式.所謂“”,即“3”是指考生必選語文、數(shù)學(xué)、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.
(1)若某考生按照“”模式隨機(jī)選科,求選出的六科中含有“語文,數(shù)學(xué),外語,物理,化學(xué)”的概率.
(2)新冠疫情期間,為積極應(yīng)對(duì)“”新高考改革,某地高一年級(jí)積極開展線上教學(xué)活動(dòng).教育部門為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測(cè)試,并給前400名頒發(fā)榮譽(yù)證書,假設(shè)該次網(wǎng)絡(luò)測(cè)試成績(jī)服從正態(tài)分布,且滿分為450分.
①考生甲得知他的成績(jī)?yōu)?/span>270分,考試后不久了解到如下情況:“此次測(cè)試平均成績(jī)?yōu)?/span>171分,351分以上共有57人”,請(qǐng)用你所學(xué)的統(tǒng)計(jì)知識(shí)估計(jì)甲能否獲得榮譽(yù)證書,并說明理由;
②考生丙得知他的實(shí)際成績(jī)?yōu)?/span>430分,而考生乙告訴考生丙:“這次測(cè)試平均成績(jī)?yōu)?/span>201分,351分以上共有57人”,請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)知識(shí)幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn),并說明理由.
附:;
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,.求證:當(dāng)時(shí),
(Ⅰ);
(Ⅱ)當(dāng)時(shí),有;
(Ⅲ)當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖放置的邊長(zhǎng)為2的正方形ABCD沿軸滾動(dòng)(無滑動(dòng)滾動(dòng)),點(diǎn)D恰好經(jīng)過坐標(biāo)原點(diǎn),設(shè)頂點(diǎn)的軌跡方程是,則對(duì)函數(shù)的判斷正確的是( )
A.函數(shù)在上有兩個(gè)零點(diǎn)
B.函數(shù)是偶函數(shù)
C.函數(shù)在上單調(diào)遞增
D.對(duì)任意的,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為的橢圓:的上下頂點(diǎn)分別為,,直線:與橢圓相交于,兩點(diǎn),與相交于點(diǎn) .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若,求面積的最大值;
(Ⅲ)設(shè)直線,相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是我國大陸地區(qū)從2013年至2019年國內(nèi)生產(chǎn)總值(GDP)近似值(單位:萬億元人民幣)的數(shù)據(jù)表格:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
中國大陸地區(qū)GDP: (單位:萬億元人民幣) |
為解釋變量,為預(yù)報(bào)變量,若以為回歸方程,則相關(guān)指數(shù);若以為回歸方程,則相關(guān)指數(shù).
(1)判斷與哪一個(gè)更適宜作為國內(nèi)生產(chǎn)總值(GDP)近似值關(guān)于年份代號(hào)的回歸方程,并說明理由;
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求出關(guān)于年份代號(hào)的回歸方程(系數(shù)精確到);
(3)黨的十九大報(bào)告中指出:從2020年到2035年,在全面建成小康社會(huì)的基礎(chǔ)上,再奮斗15年,基本實(shí)視社會(huì)主義現(xiàn)代化.若到2035年底我國人口增長(zhǎng)為億人,假設(shè)到2035年世界主要中等發(fā)達(dá)國家的人均國民生產(chǎn)總值的頻率直方圖如圖所示.
以(2)的結(jié)論為依據(jù),預(yù)測(cè)我國在2035年底人均國民生產(chǎn)總值是否可以超過假設(shè)的2035年世界主要中等發(fā)達(dá)國家的人均國民生產(chǎn)總值平均數(shù)的估計(jì)值.
參考數(shù)據(jù):,.
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:在回歸分析中
(1)可用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)可用相關(guān)系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(4)可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
以上結(jié)論中,不正確的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖統(tǒng)計(jì)了截止到2019年年底中國電動(dòng)汽車充電樁細(xì)分產(chǎn)品占比及保有量情況,關(guān)于這5次統(tǒng)計(jì),下列說法正確的是( )
A.私人類電動(dòng)汽車充電樁保有量增長(zhǎng)率最高的年份是2018年
B.公共類電動(dòng)汽車充電樁保有量的中位數(shù)是25.7萬臺(tái)
C.公共類電動(dòng)汽車充電樁保有量的平均數(shù)為23.12萬臺(tái)
D.從2017年開始,我國私人類電動(dòng)汽車充電樁占比均超過50%
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com