若存在x使不等式
x-m
ex
x
成立,則實(shí)數(shù)m的取值范圍為( 。
分析:不等式
x-m
ex
x
,等價(jià)于m<x-
x
ex
,故存在x使不等式
x-m
ex
x
成立,等價(jià)于m<(x-
x
ex
min,去、構(gòu)造函數(shù),確定單調(diào)性,即可得出結(jié)論.
解答:解:不等式
x-m
ex
x
,等價(jià)于m<x-
x
ex
,
故存在x使不等式
x-m
ex
x
成立,等價(jià)于m<(x-
x
ex
min
令y=x-
x
ex
,則y′=1-(
1
2
x
+
x
)•ex
≤1-1=0,
∴y=x-
x
ex
在[0,+∞)上是單調(diào)減函數(shù),
∴(x-
x
ex
min=0,
∴m<0.
故選C.
點(diǎn)評(píng):本題考查存在性問題,同時(shí)考查了轉(zhuǎn)化的思想,屬于中檔題.求解本題的關(guān)鍵是正確理解題意,區(qū)分存在問題與恒成立問題的區(qū)別.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為正常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex和g(x)=lnx-lna的圖象與坐標(biāo)軸的交點(diǎn)分別是點(diǎn)A,B,且以點(diǎn)A,B為切點(diǎn)的切線互相平行.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)F(x)=g(x)+
1
x
,求函數(shù)F(x)的極值;
(Ⅲ)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
(1)求此平行線的距離;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lnx-lna其中a為常數(shù),e=2.718K,函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線分別為l1,l2,且l1∥l2
(Ⅰ)求常數(shù)a的值及l(fā)1,l2的方程;
(Ⅱ)求證:對(duì)于函數(shù)f(x)和g(x)公共定義域內(nèi)的任意實(shí)數(shù)x,有|f(x)-g(x)|>2;
(Ⅲ)若存在x使不等式
x-m
f(x)
x
成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案