精英家教網 > 高中數學 > 題目詳情
5.已知cos$\frac{4π}{5}cos\frac{7π}{15}-sin\frac{9π}{5}$sin$\frac{7π}{15}$=cos(x+$\frac{π}{2}$)cosx+$\frac{2}{3}$,則sin2x等于( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

分析 利用誘導公式、兩角和與差的余弦公式以及二倍角公式對已知等式進行化簡,然后求sin2x的值.

解答 解:∵cos$\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}$sin$\frac{7π}{15}$=cos($\frac{4π}{5}$-$\frac{7π}{15}$)=cos$\frac{π}{3}$=$\frac{1}{2}$,cos(x+$\frac{π}{2}$)cosx+$\frac{2}{3}$=-sinxcosx+$\frac{2}{3}$=-$\frac{1}{2}$sin2x+$\frac{2}{3}$,
∴$\frac{1}{2}$=-$\frac{1}{2}$sin2x+$\frac{2}{3}$,
∴sin2x=$\frac{1}{3}$.
故選:A.

點評 本題考查兩角和與差的三角函數、誘導公式,考查計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{3}}}{2}$,且橢圓C經過點$A(1,-\frac{{\sqrt{3}}}{2})$,直線l:y=x+m與橢圓C交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)若△AOB的面積為1(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)=$\frac{1}{2}a{x^2}$+2x-lnx.
(1)若a=-$\frac{3}{4}$,判斷函數f(x)的單調性;
(2)若函數f(x)在定義域內單調遞減,求實數a的取值范圍;
(3)當a=-$\frac{1}{2}$時,關于x的方程f(x)=$\frac{1}{2}$x-b在[1,4]上恰有兩個不相等的實數根,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知長方體ABCD-A1B1C1D1的外接球O的體積為$\frac{32π}{3}$,其中BB1=2,則三棱錐O-ABC的體積的最大值為( 。
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知命題p:對任意x∈R,有cosx≤1,則(  )
A.¬p:存在x∈R,使cosx>1B.¬p:對任意x∈R,有cosx>1
C.¬p:存在x∈R,使cosx≥1D.¬p:對任意x∈R,有cosx≥1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知曲線y=$\frac{x^2}{4}$-lnx的一條切線的斜率為$\frac{1}{2}$,則切點的橫坐標為( 。
A.3B.2C.2,-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知函數f(x)=x2-cosx,對于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下條件:
①x1>x2;②x12>x22;③|x1|>x2;④x1+x2<0;⑤x1>|x2|.
其中能使f(x1)>f(x2)恒成立的條件序號是②.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知點P(1,3),點Q(-1,2),點M為直線x-y+1=0上一動點,則|PM|+|QM|的最小值為3.

查看答案和解析>>

同步練習冊答案