若0≤x≤2,求函數(shù)y=4 x-
1
2
-3×2x+5的最大值和最小值及相應(yīng)的x的值.
考點:函數(shù)單調(diào)性的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令t=2x,由0≤x≤2可得1≤t≤4,此時y=
1
2
t2-3t+5=
1
2
(t-3)2+
1
2
,1≤t≤4,利用二次函數(shù)的圖象和性質(zhì),可得答案.
解答: 解:令t=2x,∵0≤x≤2
∴1≤t≤4
則y=4 x-
1
2
-3×2x+5=
1
2
t2-3t+5=
1
2
(t-3)2+
1
2
,1≤t≤4
故當(dāng)t=3,即x=log23時,函數(shù)取最小值
1
2
;
當(dāng)t=1,即x=0時,函數(shù)取最大值
5
2
點評:本題考查的知識點是二次函數(shù)在閉區(qū)間上的最值,利用換元法將問題轉(zhuǎn)化為二次函數(shù)問題及熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2ax+4(0<a<3),其圖象上兩點的橫坐標(biāo)x1,x2滿足x1<x2,且x1+x2=1-a,則有(  )
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
2
x
+alnx(a∈R).
(1)當(dāng)a=0時,求f(x)的極值點;
(2)若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(3)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1,x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)成立,則函數(shù)y=f(x)為區(qū)間D上的“下凸函數(shù)”.試證當(dāng)a≤0時,f(x)為“下凸函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sin A:sin B:sin C=4:5:6,且a+b+c=30,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=(nx-n+2)•ex(其中n∈N*
(Ⅰ)求f(x)在[0,2]上的最大值;
(Ⅱ)若函數(shù)g(x)=(nx+2)(nx-15)(n∈N*),求n所能取到的最大正整數(shù),使對任意x>0,都有2f′(x)>g(x)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論關(guān)于x的方程|x2+2x-3|=a的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x2-x+a.
(Ⅰ)當(dāng)a=2時,求函數(shù)y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)y=f(x)有且僅有一個零點,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=alnx-bx2,若函數(shù)f(x)在x=1處與直線y=-
1
2
相切.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:x2-(a+a2)x+a2>0(a>0).

查看答案和解析>>

同步練習(xí)冊答案