三棱錐A-BCD中,三條側(cè)棱兩兩互相垂直,AB=3,AC=4,AD=12,則三棱錐A-BCD的外接球的表面積為( 。
A、153πB、160π
C、169πD、360π
考點:球內(nèi)接多面體
專題:空間位置關(guān)系與距離
分析:三棱錐A-BCD的三條側(cè)棱兩兩互相垂直,所以把它擴展為長方體,它也外接于球,對角線的長為球的直徑,然后解答即可.
解答: 解:三棱錐A-BCD的三條側(cè)棱兩兩互相垂直,所以把它擴展為長方體,
它也外接于球,對角線的長為球的直徑,d=
32+42+122
=13,
它的外接球半徑是
13
2
,
外接球的表面積是4π(
13
2
2=169π,
故選:C
點評:本題考查球的表面積,考查學生空間想象能力,是基礎(chǔ)題,求出球的半徑是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列命題正確的有
 
(填序號)
(1)經(jīng)過三點確定一個平面;
(2)若a∥b且a⊥c,則b⊥c;
(3)若a⊥c且b⊥c,則a∥b;  
(4)沒有公共點的兩條直線是異面直線;
(5)兩兩相交且不共點的三條直線確定一個平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的程序框圖中,輸入A=192,B=22,則輸出的結(jié)果是( 。
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=1+i,則復數(shù)z+(
.
z
z
2012=( 。
A、1-2iB、1+2i
C、2-iD、2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B的對邊分別為a、b且A=2B,則
a
b
的取值范圍是(  )
A、(0,
3
B、(1,2)
C、(
1
2
,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若ax(1+
x
5的展開式中x2項的系數(shù)是20,則實數(shù)a等于( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

各項均為正數(shù)的數(shù)列{an},{bn}滿足:an+2=2an+1+an,bn+2=bn+1+2bn(n∈N*),那么( 。
A、?n∈N*,an>bn⇒an+1>bn+1
B、?m∈N*,?n>m,an=bn
C、?m∈N*,?n>m,an>bn
D、?m∈N*,?n>m,an<bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知an=
n-
98
n-
99
,則這個數(shù)列的前30項中最大項和最小項分別是( 。
A、a1,a30
B、a1,a9
C、a10,a30
D、a10,a9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊落在直線5x-12y=0上,求sinα,cosα,tanα的值.

查看答案和解析>>

同步練習冊答案