某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立,現(xiàn)已知n=5時(shí),該命題不成立,那么可以推得( )
A.n=6時(shí)該命題不成立 | B.n=6時(shí)該命題成立 |
C.n=4時(shí)該命題不成立 | D.n=4時(shí)該命題成立 |
C
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),假設(shè)正確的是( )
A.假設(shè)三內(nèi)角都不大于60度 |
B.假設(shè)三內(nèi)角都大于60度 |
C.假設(shè)三內(nèi)危至多有一個(gè)大于60度 |
D.假設(shè)三內(nèi)角至多有兩個(gè)大于60度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
六個(gè)面都是平行四邊形的四棱柱稱(chēng)為平行六面體。如,在平行四邊形中,有,那么在圖(2)的平行六面體中有等于( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
凡自然數(shù)都是整數(shù),而 4是自然數(shù) 所以,4是整數(shù)。以上三段論推理( )
A.正確 | B.推理形式不正確 |
C.兩個(gè)“自然數(shù)”概念不一致 | D.兩個(gè)“整數(shù)”概念不一致 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)a,b是兩個(gè)實(shí)數(shù),給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一個(gè)大于1”的條件是( )
A.②③ | B.①②③ | C.③ | D.③④⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
[2013·西安檢測(cè)]給出下列三個(gè)類(lèi)比結(jié)論.
①(ab)n=anbn與(a+b)n類(lèi)比,則有(a+b)n=an+bn;
②loga(xy)=logax+logay與sin(α+β)類(lèi)比,則有sin(α+β)=sinαsinβ;
③(a+b)2=a2+2ab+b2與(a+b)2類(lèi)比,則有(a+b)2=a2+2a·b+b2.
其中結(jié)論正確的個(gè)數(shù)是( )
A.0 | B.1 | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),假設(shè)正確的是( )
A.假設(shè)三個(gè)內(nèi)角都不大于60度 |
B.假設(shè)三個(gè)內(nèi)角都大于60度 |
C.假設(shè)三個(gè)內(nèi)角至多有一個(gè)大于60度 |
D.假設(shè)三個(gè)內(nèi)角有兩個(gè)大于60度 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com