【題目】設(shè)函數(shù)的導(dǎo)函數(shù)

(1)若曲線與曲線相切,求實(shí)數(shù)的值;

(2)設(shè)函數(shù)為函數(shù)的極大值,且

①求的值;

②求證:對(duì)于.

【答案】(1).(2)①k=1,②見(jiàn)證明

【解析】

(1)由題得 曲線在點(diǎn)處的切線方程為,解方程求出m的值.(2) ①,利用導(dǎo)數(shù)求出,易得函數(shù)在區(qū)間是減函數(shù),根據(jù)單調(diào)性求出k的值. ②利用導(dǎo)數(shù)求得再證明.

(1) ,

設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,

,

結(jié)合題設(shè)得

所以

所以實(shí)數(shù)的值為.

(2)①:,

所以,

,

,得,

兩根為,

,因此,

0

+

0

極小值

極大值

結(jié)合題設(shè),有

,

易知函數(shù)在區(qū)間是減函數(shù),

因此,時(shí),,即

.

②證明:由由①,

所以,

所以,

所以是減函數(shù),

所以時(shí),

由①,時(shí),,

所以,,

即對(duì)于成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E ,對(duì)于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長(zhǎng)與lykx1被橢圓E截得的弦長(zhǎng)不可能相等的是(  )

A. kxyk0 B. kxy10

C. kxyk0 D. kxy20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,,,為側(cè)棱上一點(diǎn).

(1)若,求證:平面;

(2)求證:平面平面;

(3)在側(cè)棱上是否存在點(diǎn),使得平面? 若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線Cy=與直線0)交與M,N兩點(diǎn),

)當(dāng)k=0時(shí),分別求C在點(diǎn)MN處的切線方程;

y軸上是否存在點(diǎn)P,使得當(dāng)k變動(dòng)時(shí),總有∠OPM=∠OPN?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是定義在R上的函數(shù),對(duì)R都有,且當(dāng)0時(shí),<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形區(qū)域ABCDA,C兩點(diǎn)處各有一個(gè)通信基站,假設(shè)其信號(hào)覆蓋范圍分別是扇形區(qū)域ADE和扇形區(qū)域CBF(該矩形區(qū)域內(nèi)無(wú)其他信號(hào)來(lái)源,基站工作正常).若在該矩形區(qū)域內(nèi)隨機(jī)地選一地點(diǎn),則該地點(diǎn)無(wú)信號(hào)的概率是 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家提出的“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”的號(hào)召,小李同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè)。經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬(wàn)元,每年生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本為萬(wàn)元,且,每件產(chǎn)品售價(jià)為10元。經(jīng)市場(chǎng)分析,生產(chǎn)的產(chǎn)品當(dāng)年能全部售完。

(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;

(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)

(2)年產(chǎn)量為多少萬(wàn)件時(shí),小李在這一產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,過(guò)右焦點(diǎn)作垂直于橢圓長(zhǎng)軸的直線交橢圓于兩點(diǎn),且為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2) 設(shè)直線與橢圓相交于兩點(diǎn),若.

①求的值;

②求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3名男生,4名女生,按照不同的要求排隊(duì),求不同的排隊(duì)方案的方法種數(shù).(要求每問(wèn)要有適當(dāng)?shù)姆治鲞^(guò)程,列式并算出答案)

1)選其中5人排成一排;

2)排成前后兩排,前排3人,后排4人;

3)全體站成一排,男、女各站在一起;

4)全體站成一排,男生不能站在一起;

5)全體站成一排,甲不站排頭也不站排尾.

查看答案和解析>>

同步練習(xí)冊(cè)答案