已知拋物線C的對(duì)稱軸與y軸平行,頂點(diǎn)到原點(diǎn)的距離為5,若將拋物線C向上平移3個(gè)單位,則在x軸上截得的線段為原拋物線C在x軸上截得的線段的一半;若將拋物線C向左平移1個(gè)單位,則所得拋物線過原點(diǎn),求拋物線C的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),橢圓C′的對(duì)稱軸是坐標(biāo)軸,拋物線C在x軸上的焦點(diǎn)恰好是橢圓C′的焦點(diǎn)
(Ⅰ)若拋物線C和橢圓C′都經(jīng)過點(diǎn)M(1,2),求拋物線C和橢圓C′的方程;
(Ⅱ)已知?jiǎng)又本l過點(diǎn)p(3,0),交拋物線C于A,B兩點(diǎn),直線l′:x=2被以AP為直徑的圓截得的弦長(zhǎng)為定值,求拋物線C的方程;
(Ⅲ)在(Ⅱ)的條件下,分別過A,B的拋物線C的兩條切線的交點(diǎn)E的軌跡為D,直線AB與軌跡D交于點(diǎn)F,求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是x軸,且點(diǎn)P(1,-2)在該拋物線上,A,B是該拋物線上的兩個(gè)點(diǎn).
(Ⅰ)求該拋物線的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo);
(Ⅱ)若直線AB經(jīng)過點(diǎn)M(4,0),證明:以線段AB為直徑的圓恒過坐標(biāo)原點(diǎn);
(Ⅲ)若直線AB經(jīng)過點(diǎn)N(0,4),且滿足
BN
=4
AN
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•福建模擬)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在x軸上,且過點(diǎn)(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個(gè)焦點(diǎn)F1作與x軸不垂直的任意直線l”交橢圓于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M,則
|AB|
|F1M|
為定值,且定值是
10
3
”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線T,過該圓錐曲線焦點(diǎn)F1的弦AB,AB的垂直平分線與焦點(diǎn)所在的對(duì)稱軸的交點(diǎn)M,AB的長(zhǎng)度與F1、M兩點(diǎn)間距離的比值.試類比上述命題,寫出一個(gè)關(guān)于拋物線C的類似的正確命題,并加以證明.
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于拋物線的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且焦點(diǎn)F(2,0).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)直線l過焦點(diǎn)F與拋物線C相交與M,N兩點(diǎn),且|MN|=16,求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案