【題目】已知,

的解析式;

時,的值域;

設(shè),若對任意的,總有恒成立,求實數(shù)的取值范圍.

【答案】(1)23

【解析】

試題(1)由題已知,求,可利用換元法,即:,,將條件中的,換為得:,求出

2)由(1)得,可繼續(xù)換元,

得:,需對進行分類討論,而化為熟悉的二次函數(shù)的

值域問題解決.

3)由恒成立,可轉(zhuǎn)化為滿足,則需對的單調(diào)性進行分析,由,采用換元法,得:

,由,借助函數(shù)的單調(diào)性,對進行分類討論,分別得出的取值范圍,取各種情況的并集,得出結(jié)果.

試題解析:設(shè),則,所以,

所以;

設(shè),則

時,的值域為

時,

,,的值域為

,上單調(diào)遞增,在上單調(diào)遞減,

的值域為

綜上,當的值域為,當的值域為;

因為對任意總有

所以滿足

設(shè),則

在區(qū)間單調(diào)遞增

所以,即,所以()

時,,不符合題意

時, 若時,在區(qū)間單調(diào)遞增

所以,則

遞增,在遞減

所以,得

在區(qū)間單調(diào)遞減

所以,即,得

綜上所述:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xgx)=x4,則下列結(jié)論正確的是(

A.hx)=fxgx),則函數(shù)hx)的最小值為4

B.hx)=fx|gx|,則函數(shù)hx)的值域為R

C.hx)=|fx||gx|,則函數(shù)hx)有且僅有一個零點

D.hx)=|fx||gx|,則|hx|4恒成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某房產(chǎn)中介公司201791日正式開業(yè),現(xiàn)對其每個月的二手房成交量進行統(tǒng)計,表示開業(yè)第個月的二手房成交量,得到統(tǒng)計表格如下:

(1)統(tǒng)計中常用相關(guān)系數(shù)來衡量兩個變量之間線性關(guān)系的強弱.統(tǒng)計學認為,對于變量,如果,那么相關(guān)性很強;如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱.通過散點圖初步分析可用線性回歸模型擬合的關(guān)系.計算的相關(guān)系數(shù),并回答是否可以認為兩個變量具有很強的線性相關(guān)關(guān)系(計算結(jié)果精確到0.01)

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(計算結(jié)果精確到0.01),并預(yù)測該房產(chǎn)中介公司20186月份的二手房成交量(計算結(jié)果四舍五入取整數(shù)).

(3)該房產(chǎn)中介為增加業(yè)績,決定針對二手房成交客戶開展抽獎活動.若抽中“一等獎”獲6千元獎金;抽中“二等獎”獲3千元獎金;抽中“祝您平安”,則沒有獎金.已知一次抽獎活動中獲得“一等獎”的概率為,獲得“二等獎”的概率為,現(xiàn)有甲、乙兩個客戶參與抽獎活動,假設(shè)他們是否中獎相互獨立,求此二人所獲獎金總額(千元)的分布列及數(shù)學期望.

參考數(shù)據(jù):,,.

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若定義域內(nèi)存在實數(shù),滿足,則稱局部奇函數(shù)”.

1)已知二次函數(shù),試判斷是否為局部奇函數(shù)?并說明理由.

2)設(shè)是定義在上的局部奇函數(shù),求實數(shù)的取值范圍;

3)設(shè),若不是定義域R上的局部奇函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線的右焦點且傾斜角為的直線與圓相切,則該雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是__________(填序號)

①命題“,”的否定是,;

已知, , 的最小值為;

設(shè),命題“若,則”的否命題是真命題;

④已知, ,若命題為真命題,則的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的定義域為,滿足對任意,有.則稱為“形函數(shù)”;若函數(shù)定義域為,恒大于0,且對任意,恒有,則稱為“對數(shù)形函數(shù)”.

1)當時,判斷是否是“形函數(shù)”,并說明理由;

2)當時,判斷是否是“對數(shù)形函數(shù)”,并說明理由;

3)若函數(shù)形函數(shù),且滿足對任意都有,問是否是“對數(shù)形函數(shù)”?請加以證明,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的展開式中,第二、三、四項的二項式系數(shù)成等差數(shù)列

1的值;

2此展開式中是否有常數(shù)項,為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.

(1)求拋物線的方程;

(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.

查看答案和解析>>

同步練習冊答案