【題目】己知函數(shù)f(x)=(x﹣l)(log3a)2﹣6(log3a)x+x+l在x∈[0,l]內恒為正值,則a的取值范圍是( )
A.﹣1<a<
B.a<
C.a>
D. <a<
【答案】D
【解析】解:當a=1時,f(x)=x+1在區(qū)間[0,1]上的函數(shù)值恒為正實數(shù);
當a≠1時,要使函數(shù)f(x)=(x﹣1)(log3a)2﹣6(log3a)x+x+1在區(qū)間[0,1]上的函數(shù)值恒為正實數(shù),
則有 ,即 ,解得 .
故選:D.
由于一次項系數(shù)含有參數(shù),必須分類討論.當a=1時,顯然成立;當a≠1時,要使函數(shù)f(x)=(x﹣1)(log3a)2﹣6(log3a)x+x+1在區(qū)間[0,1]上的函數(shù)值恒為正實數(shù),則有 ,從而可求a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊, ,那么下面說法正確的是( )
A. 平面平面
B. 四面體的體積是
C. 二面角的正切值是
D. 與平面所成角的正弦值是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第十二屆全國人名代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)分別于2017年3月5日和3月3日在北京開幕,某高校學生會為了解該校學生對全國兩會的關注情況,隨機調查了該校200名學生,并將這200名學生分為對兩會“比較關注”與“不太關注”兩類,已知這200名學生中男生比女生多20人,對兩會“比較關注”的學生中男生人數(shù)與女生人數(shù)之比為,對兩會“不太關注”的學生中男生比女生少5人.
(1)該校學生會從對兩會“比較關注”的學生中根據性別進行分層抽樣,從中抽取7人,再從這7人中隨機選出2人參與兩會宣傳活動,求這2人全是男生的概率.
(2)根據題意建立列聯(lián)表,并判斷是否有99%的把握認為男生與女生對兩會的關注有差異?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產的新產品必須先靠廣告打開銷路,該產品廣告效應y(單位:元)是產品的銷售額與廣告費x(單位:元)之間的差,如果銷售額與廣告費x的算術平方根成正比,根據對市場的抽樣調查,每付出100元的廣告費,所得銷售額是1000元. (Ⅰ)求出廣告效應y與廣告費x之間的函數(shù)關系式;
(Ⅱ)該企業(yè)投入多少廣告費才能獲得最大的廣告效應?是不是廣告費投入越多越好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】王明參加某衛(wèi)視的闖關活動,該活動共3關.設他通過第一關的概率為0.8,通過第二、第三關的概率分別為p,q,其中,并且是否通過不同關卡相互獨立.記ξ為他通過的關卡數(shù),其分布列為:
ξ | 0 | 1 | 2 | 3 |
P | 0.048 | a | b | 0.192 |
(Ⅰ)求王明至少通過1個關卡的概率;
(Ⅱ)求p,q的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的右焦點為F,右頂點為A,設離心率為e,且滿足,其中O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com