在下列四個命題中,把你認(rèn)為正確的命題的序號都填在橫線上________.
①函數(shù)數(shù)學(xué)公式的定義域是數(shù)學(xué)公式;
②已知數(shù)學(xué)公式,且α∈[0,2π],則α的取值集合是數(shù)學(xué)公式;
③函數(shù)f(x)=sin2x+cos2x圖象的最大值為數(shù)學(xué)公式;
④函數(shù)y=cos2x+sinx的最小值為-1.

①③④
分析:①根據(jù)正切函數(shù)的定義可知定義域?yàn)閤+≠kπ+ 解出x的范圍即可判斷;
②因?yàn)閟inα=,且α∈[0,2π],根據(jù)特殊角的三角函數(shù)值可得α的值即可判斷;
③由函數(shù)關(guān)于直線x=-對稱得到f(0)=f(-),代入求出a即可判斷;
④利用同角三角函數(shù)間的基本關(guān)系化簡y,并利用二次函數(shù)求最值的方法得到y(tǒng)的最小值即可判斷.
解答:根據(jù)正切函數(shù)的定義得:故①正確;
,且 ,故②不正確;
函數(shù)f(x)的圖象關(guān)于直線 對稱?,故③正確;故④正確.
所以正確的序號有:①③④
故答案為:①③④
點(diǎn)評:本題考查學(xué)生知識比較多,考查了正切函數(shù)的定義域,特殊角的三角函數(shù)值,以及正弦函數(shù)的對稱性,利用同角三角函數(shù)間的基本關(guān)系化簡求值,二次函數(shù)求最值的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中:
①函數(shù)y=tan(x+
π
4
)
的定義域是{x|x≠
π
4
+kπ,k∈Z}
;
②已知sinα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
6
}
;
③函數(shù)f(x)=sin2x+acos2x的圖象關(guān)于直線x=-
π
8
對稱,則a的值等于-1;
④函數(shù)y=cos2x+sinx的最小值為-1.
把你認(rèn)為正確的命題的序號都填在橫線上
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中,把你認(rèn)為正確的命題的序號都填在橫線上
 

①函數(shù)y=tan(x+
π
4
)
的定義域是{x|x≠
π
4
+kπ,k∈Z}
;
②已知sinα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
6
}
;
③函數(shù)f(x)=sin2x+cos2x圖象的最大值為
2
;
④函數(shù)y=cos2x+sinx的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中:
①函數(shù)y=tan(x+
π
4
)
的定義域是{x|x≠
π
4
+kπ,k∈Z}
;
②y=tanx在其定義域內(nèi)為增函數(shù);
③若
a
c
=
b
c
,則必有
a
=
b
;
④函數(shù)y=cos2x+sinx的最小值為-1.
把正確的命題的序號都填在橫線上
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州市三門縣亭旁中學(xué)高一(下)第二次月考數(shù)學(xué)試卷(解析版) 題型:填空題

在下列四個命題中,把你認(rèn)為正確的命題的序號都填在橫線上   
①函數(shù)的定義域是;
②已知,且α∈[0,2π],則α的取值集合是
③函數(shù)f(x)=sin2x+cos2x圖象的最大值為;
④函數(shù)y=cos2x+sinx的最小值為-1.

查看答案和解析>>

同步練習(xí)冊答案