【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最?
【答案】
(1)解:∵AP+AQ=200,
∴S= ≤ =2500 .
當(dāng)且僅當(dāng)x=y=100時(shí)取“=”.
∴當(dāng)x=y=100時(shí),可使得三角形地塊APQ的面積最大
(2)解:設(shè)AP=x,AQ=y,則1x150+1.5y100=30000,
化為:x+y=200≥2 ,可得xy≤10000.
∴PQ2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2﹣xy=40000﹣xy≥30000.
當(dāng)且僅當(dāng)x=y=100時(shí)取“=”.
即PQ≥100 .
∴當(dāng)且僅當(dāng)x=y=100時(shí),可使PQ取得最小值,即使用竹籬笆用料最省
【解析】(1)AP+AQ=200,可得S= ≤ .(2)設(shè)AP=x,AQ=y,可得1x150+1.5y100=30000,化為:x+y=200≥2 ,可得xy≤10000.
可得PQ2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2﹣xy=40000﹣xy,即可得出PQ的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣mx﹣m在(﹣1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓AOB是某市休閑廣場的平面示意圖,半徑OA的長為10,管理部門在A,B兩處各安裝好一個(gè)光源,其相應(yīng)的光強(qiáng)度分別為4和9,根據(jù)光學(xué)原理,地面上某處照度y與光強(qiáng)度I成正比,與光源距離x的平方成反比,即y= (k為比例系數(shù)),經(jīng)測量,在弧AB的中心C處的照度為130.(C處的照度為A,B兩處光源的照度之和)
(1)求比例系數(shù)k的值;
(2)現(xiàn)在管理部門計(jì)劃在半圓弧AB上,照度最小處增設(shè)一個(gè)光源P,試問新增光源P安裝在什么位置?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=loga(x+3)﹣1(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在mx+ny+2=0上,其中mn>0,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且偶函數(shù)的定義域?yàn)?/span>,且當(dāng)時(shí), .若存在實(shí)數(shù),使得成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口水的深度是時(shí)間,單位: 的函數(shù),記作.下面是某日水深的數(shù)據(jù):
經(jīng)長期觀察, 的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時(shí),船底離海底的距離為或以上時(shí)認(rèn)為是安全的(船舶?繒r(shí),船底只需不碰海底即可).
(1)求與滿足的函數(shù)關(guān)系式;
(2)某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內(nèi)安全進(jìn)出港,請(qǐng)問它同一天內(nèi)最多能在港內(nèi)停留多少小時(shí)?(忽略進(jìn)出港所需的時(shí)間).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,四邊形是邊長為的正方形,平面平面,若, 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證:平面平面;
(3)求幾何體的體和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)設(shè)h(x)為偶函數(shù),當(dāng)x<0時(shí),h(x)=f(﹣x)+2x,求曲線y=h(x)在點(diǎn)(1,﹣2)處的切線方程;
(2)設(shè)g(x)=f(x)﹣mx,求函數(shù)g(x)的極值;
(3)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)> 成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于四面體,有以下命題:
(1)若,則過向底面作垂線,垂足為底面的外心;
(2)若, ,則過向底面作垂線,垂足為底面的內(nèi)心;
(3)四面體的四個(gè)面中,最多有四個(gè)直角三角形;
(4)若四面體的6條棱長都為1,則它的內(nèi)切球的表面積為.
其中正確的命題是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com