【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應(yīng)填入的條件為( )
A. B. C. D.
【答案】C
【解析】
由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序
的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.
當(dāng)S=0,k=1時,不滿足輸出條件,進行循環(huán),執(zhí)行完循環(huán)體后,S=1,k=2,
當(dāng)S=1,k=2時,不滿足輸出條件,進行循環(huán),執(zhí)行完循環(huán)體后,S=6,k=3,
當(dāng)S=6,k=9時,不滿足輸出條件,進行循環(huán),執(zhí)行完循環(huán)體后,S=21,k=4,
當(dāng)S=21,k=4時,不滿足輸出條件,進行循環(huán),執(zhí)行完循環(huán)體后,S=58,k=5,
當(dāng)S=58,k=5時,不滿足輸出條件,進行循環(huán),執(zhí)行完循環(huán)體后,S=141,k=6,
此時,由題意,滿足輸出條件,輸出的數(shù)據(jù)為141,
故判斷框中應(yīng)填入的條件為k≤5,
故答案為:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】砂糖橘是柑橘類的名優(yōu)品種,因其味甜如砂糖故名.某果農(nóng)選取一片山地種植砂糖橘,收獲時,該果農(nóng)隨機選取果樹20株作為樣本測量它們每一株的果實產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進行分組,得到頻率分布直方圖如圖所示.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹株數(shù)的倍.
(1)求a,b的值;
(2)從樣本中產(chǎn)量在區(qū)間(50,60]上的果樹里隨機抽取兩株,求產(chǎn)量在區(qū)間(55,60]上的果樹至少有一株被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)圍建一個面積為的矩形場地,要求矩形場地的一面利用舊墻(利用的舊墻需維修,可供利用的舊墻足夠長),其他三面圍墻要新建,在舊墻對面的新墻上要留一個寬的進出口,如圖2所示.已知舊墻的維修費用為,新墻的造價為.設(shè)利用舊墻的長度為(單位:),修建此矩形場地圍墻的總費用為(單位:元).
(1)將表示為的函數(shù),并寫出此函數(shù)的定義域;
(2)若要求用于維修舊墻的費用不得超過修建此矩形場地圍墻的總費用的15%,試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個值,使得函數(shù)有三個不同零點(只需直接寫出數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時,求函數(shù)在上的值域;
(2)若函數(shù)在上的最小值為3,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】行了一次水平測試。用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績,準(zhǔn)備進行分析和研究。經(jīng)統(tǒng)計成績的分組及各組的頻數(shù)如下:,2;,3;,10;,15;,12;,8.
(Ⅰ)頻率分布表
分組 | 頻數(shù) | 頻率 |
2 | ||
3 | ||
10 | ||
15 | ||
12 | ||
8 | ||
合計 | 50 |
頻率分布直方圖為
(Ⅰ)完成樣本的頻率分布表;畫出頻率分直方圖;
(Ⅱ)估計成績在85分以下的學(xué)生比例;
(Ⅲ)請你根據(jù)以上信息去估計樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)f(x)(x∈R)滿足:f(﹣4)=f(1)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增,則不等式x3f(x)<0的解集為( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,﹣1)∪(1,4)
C.(﹣∞,﹣4)∪(﹣1,0)
D.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com