【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1= ,
(1)試在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1
(2)在(1)的條件下,求AE和BC1所成角.

【答案】
(1)解:由EA⊥EB1,AB⊥EB1,AB∩AE=A,AB,AE平面ABE,

從而B1E⊥平面ABE且BE平面ABE,故BE⊥B1E.

不妨設(shè) CE=x,則C1E=2﹣x,

∵∠BCC1=60°,∴BE2=1+x2﹣x,

∵∠BCC1=60°,∴∠B1C1C=120°,∴

在Rt△BEB1中有1+x2﹣x+x2﹣5x+7=4,

從而x=1或x=2(當(dāng)x=2時(shí)E與C1重合不滿足題意).

故E為CC1的中點(diǎn)時(shí),EA⊥EB1


(2)解:取BC中點(diǎn)D,則DE∥BC1,連接AD,

所以∠AED或其補(bǔ)角為異面直線AE和BC1所成角所成的角.

,

∴cos∠AED= = ,

∴∠AED=60°.


【解析】(1)由EA⊥EB1 , AB⊥EB1 , AB∩AE=A,AB,AE平面ABE,從而B1E⊥平面ABE且BE平面ABE,故BE⊥B1E.利用余弦定理及其勾股定理即可得出.(2)取BC中點(diǎn)D,則DE∥BC1 , 連接AD,所以∠AED或其補(bǔ)角為異面直線AE和BC1所成角所成的角. 利用余弦定理即可得出.
【考點(diǎn)精析】本題主要考查了棱柱的結(jié)構(gòu)特征和異面直線及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形;異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,則三棱錐A﹣BCD外接球的半徑為( 。

A.2
B.3
C.4
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A′B′C′,側(cè)棱與底面垂直,且所有的棱長(zhǎng)均為2,E為AA′的中點(diǎn),F(xiàn)為AB的中點(diǎn). (Ⅰ)求多面體ABCB′C′E的體積;
(Ⅱ)求異面直線C'E與CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)求曲線焦點(diǎn)的極坐標(biāo),其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)在橢圓上, ,過點(diǎn)的直線與橢圓分別交于兩點(diǎn).

(1)求橢圓的方程及離心率;

(2)若的面積為為坐標(biāo)原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 則(
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究印刷單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計(jì)算結(jié)果精確到0.1);

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較, 的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率0.8)或10千冊(cè)(概率0.2),若印刷廠以每?jī)?cè)5元的價(jià)格將書籍出售給訂貨商,問印刷廠二次印刷8千冊(cè)還是10千冊(cè)能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),橢圓上任意一個(gè)動(dòng)點(diǎn)M到左焦點(diǎn)F1的距離的最大值 為 +1 (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線L的斜率為k,且過左焦點(diǎn)F1 , 與橢圓C相交于P、Q兩點(diǎn),若△PQF2的面積為 ,試求k的值及直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊擊中目標(biāo)的概率.先由計(jì)算器給出0到9之間取整數(shù)的隨機(jī)數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組如下的隨機(jī)數(shù):

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根據(jù)以上數(shù)據(jù)估計(jì)該運(yùn)動(dòng)員射擊4次至少擊中3次的概率為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案