對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足:①f(x)在D內(nèi)單調(diào);②存在區(qū)間[a,b]⊆D,使f(x)在區(qū)間[a,b]上值域?yàn)閇a,b],則函數(shù)y=f(x)(x∈D)稱為閉函數(shù).按照上述定義,若函數(shù)y=
2x
為閉函數(shù),則符合條件②的區(qū)間[a,b]可以是
[1,2]或[-2,-1]等等(答案不唯一)
[1,2]或[-2,-1]等等(答案不唯一)
分析:由已知條件中“閉函數(shù)”的定義,說明函數(shù)y=
2
x
在區(qū)間[a,b]的值域是[a,b],因?yàn)楹瘮?shù)在(-∞,0)和(0,∞+)均為減函數(shù)所以分a、b都小于0和a、b都大于0兩種情況討論,通過解方程組,即可得到符合條件②的區(qū)間[a,b].
解答:解:∵函數(shù)y=
2
x
在(-∞,0)和(0,∞+)均為減函數(shù),在[a,b]的值域是[a,b],
∴當(dāng)[a,b]⊆(0,+∞)時(shí),可得
f(a)=
2
a
=b
f(b)=
2
a
=b
,說明只要滿足ab=2,且a<b的正數(shù)a、b都能符合題意
同理可得,當(dāng)[a,b]⊆(-∞,0)時(shí),滿足ab=2,且a<b的負(fù)數(shù)數(shù)a、b也能符合題意.
所以任意滿足ab=2,且a<b的實(shí)數(shù)都能符合題意.
故答案為:[1,2]或[-2,-1]等等(答案不唯一)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性和函數(shù)的值域,屬于基礎(chǔ)題.根據(jù)新定義構(gòu)造出滿足條件的方程(組)或不等式(組)將新定義轉(zhuǎn)化為熟悉的數(shù)學(xué)模型是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2,使得對(duì)任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個(gè)寬度為d的通道.給出下列函數(shù):①f(x)=
1
x
,②f(x)=sinx,③f(x)=
x2-1
,其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)f(x),如果存在常數(shù)M和N,使得對(duì)于任意x∈D,都有M≤f(x)≤N成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個(gè)下界,N稱為函數(shù)f(x)的一個(gè)上界.
(1)判斷函數(shù)f(x)=log2x-x2在(0,+∞)上是否為有界函數(shù),不必說明理由;
(2)判斷函數(shù)f(x)=1+(
1
2
x+(
1
4
x在[0,+∞)上是否為有界函數(shù),請(qǐng)說明理由
(3)若函數(shù)f(x)=1+a(
1
2
x+(
1
4
x在[0,+∞)上是有界函數(shù),且3是f(x)的一個(gè)上界,-3是f(x)的一個(gè)下界,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案