【題目】下圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后,左右、上下均對(duì)稱(chēng),每個(gè)四棱柱的底面都是邊長(zhǎng)為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體的體積為________.

【答案】

【解析】

該幾何體體積等于兩個(gè)四棱柱的體積和減去兩個(gè)四棱柱交叉部分的體積,根據(jù)直觀圖分別進(jìn)行求解即可.

該幾何體的直觀圖如圖所示,

該幾何體的體積為兩個(gè)四棱柱的體積和減去兩個(gè)四棱柱交叉部分的體積.

兩個(gè)四棱柱的體積和為.

交叉部分的體積為四棱錐的體積的2.

在等腰中,邊上的高為2,則

由該幾何體前后,左右上下均對(duì)稱(chēng),知四邊形為邊長(zhǎng)為的菱形.

設(shè)的中點(diǎn)為,連接易證即為四棱錐的高,

中,

所以

因?yàn)?/span>,所以

所以求體積為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,離心率為,過(guò)點(diǎn)的直線相交于兩點(diǎn),點(diǎn)為線段的中點(diǎn).

1)當(dāng)的傾斜角為時(shí),求直線的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

設(shè)函數(shù)fx=x+ax2+blnx,曲線y=fx)過(guò)P1,0),且在P點(diǎn)處的切斜線率為2.

I)求a,b的值;

II)證明:f(x)≤2x-2。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若,設(shè),證明:,,使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若,求處的切線與兩坐標(biāo)軸圍成的三角形的面積;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷(xiāo),凡在該超市購(gòu)物滿400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì)

1)求1名顧客摸球2次停止摸獎(jiǎng)的概率:

2)記1名顧客5次摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是坐標(biāo)原點(diǎn),過(guò)的直線分別交拋物線兩點(diǎn),直線與過(guò)點(diǎn)平行于軸的直線相交于點(diǎn),過(guò)點(diǎn)與此拋物線相切的直線與直線相交于點(diǎn).則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F為拋物線的焦點(diǎn),過(guò)F的動(dòng)直線交拋物線CAB兩點(diǎn).當(dāng)直線與x軸垂直時(shí),.

1)求拋物線C的方程;

2)若直線AB與拋物線的準(zhǔn)線l相交于點(diǎn)M,在拋物線C上是否存在點(diǎn)P,使得直線PA,PM,PB的斜率成等差數(shù)列?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面,,點(diǎn)分別為的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)若為線段上的點(diǎn),且直線與平面所成的角為,求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案