已知實數(shù)αβ滿足如下兩等式α325α=1,α325β=5,試求αβ的值.

 

答案:
解析:

f(x)=x32x,則由條件可得

f(α1)=2,f(β1)=2

f(x)=x32xR上是奇函數(shù).且為單調(diào)增函數(shù).

∴f(α1)=f(β1)

∴f(α1)=f(1β)

由函數(shù)單調(diào)性知,α1=1β

∴αβ=2

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,對任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當x<0時,f(x)<0.
(1)判斷并證明f(x)的單調(diào)性和奇偶性
(2)是否存在這樣的實數(shù)m,當θ∈[0,
π
2
]
時,使不等式f[sin2θ-(2+m)(sinθ+cosθ)-
4
sinθ+cosθ
]+f(3+2m)>0

對所有θ恒成立,如存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進制的簡記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江二模)設數(shù)列{an}滿足:a1=
1
2
1
1-an+1
=
1
1-an
+1
,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若[x]表示不超過實數(shù)x的最大整數(shù),如[3.2]=3,[-1.3]=-2等,已知函數(shù)f(x)=[x],數(shù)列{bn}的通項為bn=f(
1
2
1
1-an
)
,試求{bn}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省姜堰市二中學高三學情調(diào)查數(shù)學試卷 題型:解答題

(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長

   (1)求證:的中點;(2)求線段的長.

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點在矩陣A的變換下得到

   (1)求實數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的極坐標方程為

(1)過極點的一條直線與圓相交于,A兩點,且∠,求的長.

(2)求過圓上一點,且與圓相切的直線的極坐標方程;

 

D.選修4-5:不等式選講

已知實數(shù)滿足,求的最小值;

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省姜堰市高三學情調(diào)查數(shù)學試卷 題型:解答題

(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長

   (1)求證:的中點;(2)求線段的長.

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點在矩陣A的變換下得到

   (1)求實數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的極坐標方程為,

(1)過極點的一條直線與圓相交于,A兩點,且∠,求的長.

(2)求過圓上一點,且與圓相切的直線的極坐標方程;

 

D.選修4-5:不等式選講

已知實數(shù)滿足,求的最小值;

 

 

查看答案和解析>>

同步練習冊答案