【題目】在平面直角坐標系中,橢圓: 的離心率是,且直線: 被橢圓截得的弦長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與圓: 相切:
(i)求圓的標準方程;
(ii)若直線過定點,與橢圓交于不同的兩點、,與圓交于不同的兩點、,求的取值范圍.
【答案】(I);(II)(i);(ii).
【解析】試題分析:(Ⅰ)由直線過定點, ,可得到,再結(jié)合,即可求出橢圓的方程;(Ⅱ)(i)利用圓的幾何性質(zhì),求出圓心到直線的距離等于半徑,即可求出的值,即可求出圓的標準方程;(ii)首先設直線的方程為,利用韋達定理即可求出弦長的表達式,同理利用圓的幾何關(guān)系可求出弦長的表達式,即可得到的表達式,再用換元法,即可求出的取值范圍.
試題解析:
解:(Ⅰ)由已知得直線過定點, , ,
又, ,解得, ,
故所求橢圓的標準方程為.
(Ⅱ)(i)由(Ⅰ)得直線的方程為,即,
又圓的標準方程為,
∴圓心為,圓的半徑,
∴圓的標準方程為.
(ii)由題可得直線的斜率存在,
設: ,與橢圓的兩個交點為、,
由消去得,
由,得,
, ,
∴.
又圓的圓心到直線: 的距離,
∴圓截直線所得弦長,
∴,
設, ,
則,
∵的對稱軸為,在上單調(diào)遞增, ,
∴,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求邊c的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家商場對同一種商品展開促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示轉(zhuǎn)盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.
乙商場:從裝有4個白球,4個紅球和4個籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個不同顏色的球,即為中獎.
(Ⅰ)試問:購買該商品的顧客在哪家商場中獎的可能性大?說明理由;
(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)若在上單調(diào)遞增,求的取值范圍;
(2)令,將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象.區(qū)間滿足:在上至少含有30個零點.在所有滿足上述條件的中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2時取得極值.
(1)求a,b的值;
(2)求曲線f(x)在x=0處的切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.
(1)求證:M為PB的中點;
(2)求二面角B﹣PD﹣A的大;
(3)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)= .
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com