【題目】設(shè)集合M={x|﹣2<x<3},N={x|2x+1≤1},則M∩(RN)=(
A.(3,+∞)
B.(﹣2,﹣1]
C.(﹣1,3)
D.[﹣1,3)

【答案】C
【解析】解:由N中不等式變形得:2x+1≤1=20 , 即x+1≤0,
解得:x≤﹣1,即N=(﹣∞,﹣1],
RN=(﹣1,+∞),
∵M(jìn)=(﹣2,3),
∴M∩(RN)=(﹣1,3),
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí),掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)賦值語(yǔ)句的描述正確的是

①可以給變量提供初值 ②將表達(dá)式的值賦給變量

③不能給同一變量重復(fù)賦值 ④可以給一個(gè)變量重復(fù)賦值

A. ①②③ B. ①② C. ②③④ D. ①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:x+ay﹣4=0與l2:(a﹣2)x+y﹣1=0相交于點(diǎn)P,若l1⊥l2 , 則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若集合M={x|x2>4},N={x|1<x≤3},則N∩(RM)=(
A.{x|1<x≤2}
B.{x|﹣2≤x≤2}
C.{x|﹣2≤x<1}
D.{x|﹣2≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4 , 定義映射f:(a1 , a2 , a3 , a4)→(b1 , b2 , b3 , b4),則f(4,3,2,1)等于(
A.(1,2,3,4)
B.(0,3,4,0)
C.(﹣1,0,2,﹣2)
D.(0,﹣3,4,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+2|﹣|x﹣1|.
(1)求不等式f(x)>1解集;
(2)若關(guān)于x的不等式f(x)+4≥|1﹣2m|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若空間中四條兩兩不同的直線l1l2,l3,l4滿足l1l2,l2l3,l3l4則下列結(jié)論一定正確的是 (  )

A. l1l4

B. l1l4

C. l1l4既不垂直也不平行

D. l1l4的位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 若m>1,且am1+am+1﹣am2=0,S2m1=38則m等于(
A.38
B.20
C.10
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】使平面α∥平面β的一個(gè)條件是(
A.存在一條直線a,a∥α,a∥β
B.存在一條直線a,aα,a∥β
C.存在兩條平行直線a、b,aα,bβ,a∥β,b∥α
D.存在兩條異面直線a、b,aα,bβ,a∥β,b∥α

查看答案和解析>>

同步練習(xí)冊(cè)答案