13.函數(shù)y=ax(a>0且a≠1)的圖象均過定點(diǎn)(0,1).

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)判斷即可.

解答 解:∵a0=1,a>0且a≠1,
∴函數(shù)y=ax(a>0且a≠1)的圖象均過定點(diǎn)(0,1),
故答案為:(0,1).

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=2,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一點(diǎn),且CE∥平面PAB,則三棱錐C-ABE的體積為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C的內(nèi)接矩形的一條對(duì)角線上的兩個(gè)頂點(diǎn)坐標(biāo)分別為P(1,-2),Q(3,4).
(1)求圓C的方程; 
(2)若直線y=2x+b被圓C截得的弦長為$2\sqrt{5}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,點(diǎn)A,B是單位圓O上的兩點(diǎn),A,B點(diǎn)分別在第一,而象限,點(diǎn)C是圓O與x軸正半軸的交點(diǎn),若∠COA=60°,∠AOB=α,點(diǎn)B的坐標(biāo)為(-$\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα的值;
(2)已知?jiǎng)狱c(diǎn)P沿圓弧從C點(diǎn)到A點(diǎn)勻速運(yùn)動(dòng)需要2秒鐘,求動(dòng)點(diǎn)P從A點(diǎn)開始逆時(shí)針方向作圓周運(yùn)動(dòng)時(shí),點(diǎn)P的縱坐標(biāo)y關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x•2x+a-1,若f(-1)=$\frac{3}{4}$,則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)α:x≤-5或x≥1,β:2m-3≤x≤2m+1,若α是β的必要條件,求實(shí)數(shù)m的取值范圍m≤-3或m≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知${({m^2}+m)^{\frac{3}{5}}}≤{(3-m)^{\frac{3}{5}}}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.為了得到周期y=sin(2x+$\frac{π}{6}$)的圖象,只需把函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)單位長度B.向右平移$\frac{π}{4}$個(gè)單位長度
C.向左平移$\frac{π}{2}$個(gè)單位長度D.向右平移$\frac{π}{2}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.代數(shù)式sin($\frac{π}{2}$+$\frac{π}{3}$)+cos($\frac{π}{2}$-$\frac{π}{6}$)的值為(  )
A.-1B.0C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案