【題目】如圖,在正三棱柱中,所有棱長都等于.
(1)當(dāng)點(diǎn)是的中點(diǎn)時(shí),
①求異面直線和所成角的余弦值;
②求二面角的正弦值;
(2)當(dāng)點(diǎn)在線段上(包括兩個(gè)端點(diǎn))運(yùn)動(dòng)時(shí),求直線與平面所成角的正弦值的取值范圍.
【答案】(1); (2).
【解析】
(1)建立空間直角坐標(biāo)系,利用異面直線所成角和二面角的求解方法求解;
(2)設(shè)出M的坐標(biāo),利用空間向量求出線面角的目標(biāo)式,結(jié)合目標(biāo)式的特征求解范圍.
(1)取的中點(diǎn)為建立空間直角坐標(biāo)系,
則
當(dāng)是的中點(diǎn)時(shí),則
①
設(shè)異面直線和所成角為則=
② 設(shè)平面的一個(gè)法向量為
則
所以令則
設(shè)平面的一個(gè)法向量為則
令
設(shè)二面角的平面角為,
則
所以
(2)當(dāng)在上運(yùn)動(dòng)時(shí),設(shè)
設(shè)
則
設(shè)直線與平面所成的角為則
設(shè)設(shè)所以
設(shè)
直線與平面所成的角的正弦值的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為2的正方形ABCD中,P為CD中點(diǎn),分別將△PAD, △PBC沿 PA,PB所在直線折疊,使點(diǎn)C與點(diǎn)D重合于點(diǎn)O,如圖2.在三棱錐P-OAB中,E為 PB中點(diǎn).
(Ⅰ)求證:PO⊥AB;
(II)求直線BP與平面POA所成角的正弦值;
(Ⅲ)求二面角P-AO-E的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2+S3=8.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國Ⅱ卷)如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
(1)證明:直線CE∥平面PAB;
(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為, ,數(shù)列滿足點(diǎn)在直線上.
(1)求數(shù)列, 的通項(xiàng), ;
(2)令,求數(shù)列的前項(xiàng)和;
(3)若,求對(duì)所有的正整數(shù)都有成立的的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線l1和l2是異面直線,l1α,l2β,α∩β=l,則下列命題正確的是( 。
A. l至少與,中的一條相交B. l與,都相交
C. l至多與,中的一條相交D. l與,都不相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,D,E,F分別是邊,,中點(diǎn),下列說法正確的是( )
A.
B.
C.若,則是在的投影向量
D.若點(diǎn)P是線段上的動(dòng)點(diǎn),且滿足,則的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)要得到的圖像,只需要把函數(shù)的圖像上的對(duì)應(yīng)點(diǎn)的橫坐標(biāo)_________,縱坐標(biāo)_________;
(2)要得到的圖像,只需要把函數(shù)的圖像上的對(duì)應(yīng)點(diǎn)的橫坐標(biāo)_________,縱坐標(biāo)___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com