已知,,且.
(I)將表示成的函數(shù),并求的最小正周期;
(II)記的最大值為, 、、分別為的三個內(nèi)角、、對應(yīng)的邊長,若且,求的最大值.
(I) ,函數(shù)的最小正周期為
(II)是當(dāng)且僅當(dāng)時,的最大值為.
解析試題分析:(I)由得
即
所以 ,又所以函數(shù)的最小正周期為
(II)由(I)易得
于是由即,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bf/d/bzpu8.png" style="vertical-align:middle;" />為三角形的內(nèi)角,故
由余弦定理得
解得
于是當(dāng)且僅當(dāng)時,的最大值為.
考點(diǎn):本題主要考查平面向量共線的條件,三角恒等變換,三角函數(shù)的性質(zhì),余弦定理的應(yīng)用,基本不等式的應(yīng)用。
點(diǎn)評:典型題,為研究三角函數(shù)的圖象和性質(zhì),往往需要將函數(shù)“化一”,這是?碱}型。首先運(yùn)用“三角公式”進(jìn)行化簡,為進(jìn)一步解題奠定了基礎(chǔ)。本題綜合性較強(qiáng),考查知識覆蓋面較廣。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù), 其中
,其中若相鄰兩對稱軸間的距離不小于
(1)求的取值范圍;
(2)在中,、、分別是角A、B、C的對邊,,當(dāng)最大時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,函數(shù)·
(1)求函數(shù)的最小正周期T及單調(diào)減區(qū)間
(2)已知分別是△ABC內(nèi)角A,B,C的對邊,其中A為銳角,且
,求A,b和△ABC的面積S
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)求函數(shù)在區(qū)間上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),(Ⅰ)確定函數(shù)的單調(diào)增區(qū)間;(Ⅱ)當(dāng)函數(shù)取得最大值時,求自變量的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com