精英家教網 > 高中數學 > 題目詳情

【題目】根據某電子商務平臺的調查統(tǒng)計顯示,參與調查的位上網購物者的年齡情況如圖.

1已知、三個年齡段的上網購物者人數成等差數列,求的值;

2該電子商務平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放元的代金券,潛在消費人群每人發(fā)放元的代金券.已經采用分層抽樣的方式從參與調查的位上網購物者中抽取了人,現在要在這人中隨機抽取人進行回訪,求此三人獲得代金券總和的分布列與數學期望.

【答案】1;2分布列略,186.

【解析】

試題分析:1由于五個組的頻率之和等于1,即五個矩形的面積之和為1,即求得的知;

2由已知高消費人群所占比例為,潛在消費人群的比例為,由分層抽樣的性質知抽出的人中,高消費人群有人,潛在消費人群有人,隨機抽取的三人中代金券總和可能的取值為:,由離散隨機變量概率公式列得分布列,繼而求得數學期望.

試題解析:1由于五個組的頻率之和等于1,故:

,

又因為、三個年齡段的上網購物者人數成等差數列

所以

聯(lián)立解出

3由已知高消費人群所占比例為,潛在消費人群的比例為

由分層抽樣的性質知抽出的人中,高消費人群有人,潛在消費人群有人,

隨機抽取的三人中代金券總和可能的取值為:

;

列表如下:

數學期望

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點.

(1)求證: 平面;

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某中學聯(lián)盟舉行了一次“盟校質量調研考試”活動,為了解本次考試學生的某學科成績情況,從中抽取部分學生的分數(滿分為分,得分取正整數,抽取學生的分數均在之內)作為樣本(樣本容量為)進行統(tǒng)計,按照的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(莖葉圖中僅列出了得分在的數據)

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績在分以上(含分)的學生中隨機抽取名學生參加“省級學科基礎知識競賽”,求所抽取的名學生中恰有一人得分在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:在數列中,若為常數)則稱為“等方差數列”,下列是對“等方差數列”的有關判斷( )

①若是“等方差數列”,在數列 是等差數列;

是“等方差數列”;

③若是“等方差數列”,則數列為常)也是“等方差數列”;

④若既是“等方差數列”又是等差數列,則該數列是常數數列.

其中正確命題的個數為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“石頭、剪刀、布”是個廣為流傳的游戲,游戲時甲乙雙方每次做“石頭”“剪刀”“布”三種手勢中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種手勢不分勝負須繼續(xù)比賽,假設甲乙兩人都是等可能地做這三種手勢.

(1)列舉一次比賽時兩人做出手勢的所有可能情況;

(2)求一次比賽甲取勝的概率,并說明“石頭、剪刀、布”這個廣為流傳的游戲的公平性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1求橢圓的標準方程;

2已知點,和平面內一點,過點任作直線與橢圓相交于兩點,設直線的斜率分別為,,試求滿足的關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小明準備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學的數學知識制定一個方案來決定去哪個景點:(如圖)曲線和直線交于點.以為起點,再從曲線上任取兩個點分別為終點得到兩個向量,記這兩個向量的數量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

(1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點作為向量的終點,則小明決定去武夷山.點在曲線上運動,若點的坐標為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)當時,上恒成立,求實數的取值范圍;

(2)當時,若函數上恰有兩個不同的零點,求實數的取值范圍;

(3)是否存在常數,使函數和函數在公共定義域上具有相同的單調性?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案