【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù),其中為實(shí)數(shù).

1)求實(shí)數(shù)的值;

2)用定義證明上是減函數(shù);

3)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;2)證明見(jiàn)解析(3

【解析】

1)由定義域?yàn)?/span>,且利用奇函數(shù)的性質(zhì),再找一組互為相反數(shù)代入得到另外一個(gè)方程,解出的值;(2)用定義設(shè),然后計(jì)算的正負(fù)來(lái)判斷函數(shù)單調(diào)性;(3)若,根據(jù)是單調(diào)遞減的奇函數(shù),進(jìn)行移項(xiàng)變形,列出的不等式,進(jìn)而求得實(shí)數(shù)的取值范圍。

1)∵上的奇函數(shù),所以.故,可得.

,解得.

經(jīng)檢驗(yàn),當(dāng)時(shí),,滿足上的奇函數(shù).

2)由(1)得.任取實(shí)數(shù),且,

.

,∴,且,即

∴函數(shù)上是減函數(shù).

3)由(1)和(2)知,不等式恒成立,

恒成立,

對(duì)任意的恒成立,

對(duì)任意的恒成立.

,易知當(dāng)時(shí),取得最大值8,∴

故實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電動(dòng)汽車(chē)“行車(chē)數(shù)據(jù)”的兩次記錄如下表:

記錄時(shí)間

累計(jì)里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

2019年1月1日

4000

0.125

280

2019年1月2日

4100

0.126

146

(注:累計(jì)里程指汽車(chē)從出廠開(kāi)始累計(jì)行駛的路程,累計(jì)耗電量指汽車(chē)從出廠開(kāi)始累計(jì)消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對(duì)該車(chē)在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是

A. 等于12.5B. 12.5到12.6之間

C. 等于12.6D. 大于12.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是菱形,.

1)證明:平面平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),x∈[0,],若函數(shù)F(x)=f(x)-3的所有零點(diǎn)依次記為,且,則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的左、右焦點(diǎn)分別為,,離心率為,點(diǎn)在橢圓C上,且,F1MF2的面積為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)已知直線l與橢圓C交于A,B兩點(diǎn),,若直線l始終與圓相切,求半徑r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,ABCD,AD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=AD,點(diǎn)M在線段EF上。

(1)求證:BC⊥平面ACFE

(2)若,求證:AM∥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面四邊形ABCD,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點(diǎn),求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某高校學(xué)生喜歡使用手機(jī)支付是否與性別有關(guān),抽取了部分學(xué)生作為樣本,統(tǒng)計(jì)后作出如圖所示的等高條形圖,則下列說(shuō)法正確的是(

A.喜歡使用手機(jī)支付與性別無(wú)關(guān)

B.樣本中男生喜歡使用手機(jī)支付的約

C.樣本中女生喜歡使用手機(jī)支付的人數(shù)比男生多

D.女生比男生喜歡使用手機(jī)支付的可能性大些

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù)),上的最大值為.

(1)求實(shí)數(shù)的值;

(2)判斷函數(shù)內(nèi)的極值點(diǎn)個(gè)數(shù),并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案