【題目】數(shù)列滿足,且數(shù)列的前項和為,已知數(shù)列的前項和為1,那么數(shù)列的首項________.

【答案】

【解析】

由數(shù)列分組求和可得a1+a2++a2018,由數(shù)列{bn}的前n項和以及數(shù)列的遞推式可得ana1的關系,求和解方程即可得到所求值.

數(shù)列{ann}的前2018項和為1,

即有(a1+a2++a2018)﹣(1+2++2018)=1

可得a1+a2++a20181+1009×2019,

由數(shù)列{bn}的前n項和為n2,可得bn2n1,

,

a21+a1a32a1,a47a1,a5a1,

a69+a1,a72a1a815a1,a9a1,

…,

可得a1+a2++a2018=(1+2+7+9+2+15+17+2+23++4025+2+4031+a1+4033+a1

505+×505×504×8+2×504+504×7+×504×503×8+2a11+1009×2019,

解得a1

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)有3個不同零點,則實數(shù)a的取值范圍____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù),).

(1)若,求函數(shù)的單調(diào)區(qū)間

(2)證明:當,函數(shù)有兩個零點,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C:的離心率為,其右焦點到橢圓C外一點的距離為,不過原點O的直線l與橢圓C相交于A,B兩點,且線段AB的長度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當取得極值,求的值并判斷是極大值點還是極小值點;

2)當函數(shù)有兩個極值點,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,,且.

(1)求證:是等比數(shù)列,并求數(shù)列的通項公式;

(2)數(shù)列中是否存在不同的三項按照一定順序重新排列后,構成等差數(shù)列?若存在,求滿足條件的項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,,的中點,點在平面內(nèi)的射影在線段上.

(1)求證:

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,設,且,記;

(1)設,其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關系,并證明;

(3)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進行科學試驗.為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進行做接種試驗.該試驗的設計為:①對參加試驗的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗共進行3個周期.已知每只小白鼠接種后當天出現(xiàn)癥狀的概率均為,假設每次接種后當天是否出現(xiàn)癥狀與上次接種無關.

1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗,求一只小白鼠至多能參加一個接種周期試驗的概率;

2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個接種周期結束后,對其終止試驗.設一只小白鼠參加的接種周期為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案